On the intersection of two homogeneous Beatty sequences
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 145-151
Voir la notice de l'article provenant de la source Math-Net.Ru
Homogeneous Beatty sequences are sequences of the form $a_n=[\alpha n]$, where $\alpha$ is a positive irrational number. In 1957 T. Skolem showed that if the numbers $1,\frac{1}{\alpha},\frac{1}{\beta}$ are linearly independent over the field of rational numbers, then the sequences $[\alpha n]$ and $[\beta n]$ have infinitely many elements in common. T. Bang strengthened this result: denote $S_{\alpha,\beta}(N)$ the number of natural numbers $k$, $1\leqslant k\leqslant N$, that belong to both Beatty sequences $[\alpha n]$, $[\beta m]$, and the numbers $1,\frac{1}{\alpha},\frac{1}{\beta}$ are linearly independent over the field of rational numbers, then $S_{\alpha,\beta}(N)\sim \frac{N}{\alpha\beta}$ for $N\to\infty.$ In this paper, we prove a refinement of this result for the case of algebraic numbers. Let $\alpha,\beta>1$ be irrational algebraic numbers such that $1,\frac{1}{\alpha},\frac{1}{\beta}$ are linearly independent over the field of rational numbers. Then for any $\varepsilon>0$ the following asymptotic formula holds: $$S_{\alpha,\beta}(N)=\frac{N}{\alpha\beta}+O\bigl(N^{\frac12+\varepsilon}\bigr), N\to\infty.$$
Keywords:
homogeneous Beatty sequence, exponential sums, asymptotic formula.
@article{CHEB_2022_23_5_a11,
author = {A. V. Begunts and D. V. Goryashin},
title = {On the intersection of two homogeneous {Beatty} sequences},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {145--151},
publisher = {mathdoc},
volume = {23},
number = {5},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a11/}
}
A. V. Begunts; D. V. Goryashin. On the intersection of two homogeneous Beatty sequences. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 145-151. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a11/