Volterra integral equation with power nonlinearity
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 6-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of an integral inequality generalizing, in particular, Chebyshev's inequality, we obtain sharp two-sided a priori estimates for the solution of the Volterra integral equation with a power nonlinearity and a general kernel in a cone consisting of all non-negative and continuous functions on the positive half-axis. On the basis of these estimates, a complete metric space is constructed that is invariant with respect to the nonlinear Volterra integral operator generated by this equation, and a global theorem on the existence, uniqueness, and method of finding a solution to the indicated equation is proved by the method of weighted metrics (analogous to the Belitsky method). It is shown that this solution can be found by the method of successive approximations of the Picard type and an estimate is given for the rate of their convergence in terms of the weight metric. It is shown that, in contrast to the linear case, the nonlinear homogeneous Volterra integral equation, in addition to the trivial solution, can also have a nontrivial solution. Conditions are indicated under which the homogeneous equation corresponding to a given nonlinear integral equation has only a trivial solution. At the same time, a refinement and generalization of some results obtained in the case of nonlinear integral equations with difference and sum kernels is given. Examples are given to illustrate the results obtained.
Keywords: Volterra integral equation, power nonlinearity, a priori estimates.
@article{CHEB_2022_23_5_a1,
     author = {S. N. Askhabov},
     title = {Volterra integral equation with power nonlinearity},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Volterra integral equation with power nonlinearity
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 6
EP  - 19
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a1/
LA  - ru
ID  - CHEB_2022_23_5_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Volterra integral equation with power nonlinearity
%J Čebyševskij sbornik
%D 2022
%P 6-19
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a1/
%G ru
%F CHEB_2022_23_5_a1
S. N. Askhabov. Volterra integral equation with power nonlinearity. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 6-19. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a1/

[1] Okrasiński W., “On the existence and uniqueness of nonnegative solutions of a certain non-linear convolution equation”, Ann. Pol. Math., 36:1 (1979), 61–72

[2] Okrasiński W., “On a non-linear convolution equation occurring in the theory of water percolation”, Annal. Polon. Math., 37:3 (1980), 223–229

[3] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., “Integralnye uravneniya tipa svertki so stepennoi nelineinostyu i ikh sistemy”, Dokl. AN SSSR, 311:5 (1990), 1035–1039

[4] Askhabov S. N., Betilgiriev M. A., “Nelineinye integralnye uravneniya tipa svertki s pochti vozrastayuschimi yadrami v konusakh”, Differents. uravneniya, 27:2 (1991), 321–330

[5] Bushell P. J., Okrasiński W., “Nonlinear Volterra integral equations with convolution kernel”, J. London Math. Soc., 41:2 (1991), 503–510

[6] Askhabov S. N., Betilgiriev M. A., “Apriornye otsenki reshenii nelineinogo integralnogo uravneniya tipa svertki i ikh prilozheniya”, Matem. zametki, 54:5 (1993), 3–12

[7] Bushell P. J., Okrasiński W., “Nonlinear Volterra integral equations and the Apery identities”, Bull. London Math. Soc., 24 (1992), 478–484

[8] Kilbas A. A., Saigo M., “On solution of nonlinear Abel-Volterra integral equation”, J. Math. Anal. Appl., 229 (1999), 41–60

[9] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009

[10] Brunner H., Volterra integral equations: an introduction to the theory and applications, Cambridge University Press, Cambridge, 2017

[11] Keller J. J., “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181

[12] Schneider W. R., “The general solution of a nonlinear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142

[13] Okrasiński W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74

[14] Askhabov S. N., “Ob odnom integralnom uravnenii s summarnym yadrom i neodnorodnostyu v lineinoi chasti”, Differents. uravneniya, 57:9 (2021), 1210–1219

[15] Edwards R. E., Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1995

[16] Sadovnichii V. A., Grigoryan A. A., Konyagin S. V., Zadachi studencheskikh matematicheskikh olimpiad, MGU, M., 1987

[17] Okrasiński W., “On subsolutions of a nonlinear diffusion problem”, Math. Meth. in the Appl. Sci., 11:3 (1989), 409–416

[18] Askhabov S. N., “Integro-differentsialnoe uravnenie tipa svertki so stepennoi nelineinostyu i neodnorodnostyu v lineinoi chasti”, Differents. uravneniya, 56:6 (2020), 786–795