Generalized extremal Yudin problems for polynomials
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 105-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two extremal problems of V.A. Yudin for polynomials in a more general setting are studied. In the first problem, among polynomials with nonnegative expansion coefficients in orthogonal polynomials on a segment $[-1,1]$, for which several successive moments and derivatives at the point $-1$ are equal to zero, a polynomial with a maximum non-negativity segment is searched. The cases of the solving of the problem are described in terms of the Krein property. In the second problem, among polynomials with zero boundary conditions and zero first two moments on the segment $[-1,1]$, a polynomial with a minimum segment symmetric about zero on which it is nonnegative and nonpositive outside is searched. For the second problem, a complete solution was obtained.
Keywords: weighted function, orthogonal polynomials, moments, boundary conditions, extremal problems.
@article{CHEB_2022_23_4_a8,
     author = {V. I. Ivanov},
     title = {Generalized extremal {Yudin} problems for polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a8/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Generalized extremal Yudin problems for polynomials
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 105
EP  - 114
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a8/
LA  - ru
ID  - CHEB_2022_23_4_a8
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Generalized extremal Yudin problems for polynomials
%J Čebyševskij sbornik
%D 2022
%P 105-114
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a8/
%G ru
%F CHEB_2022_23_4_a8
V. I. Ivanov. Generalized extremal Yudin problems for polynomials. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 105-114. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a8/

[1] Yudin V. A., “Kod i dizain”, Diskret. matem., 9:2 (1997), 3–11 | DOI | Zbl

[2] Yudin V. A., “Raspredelenie tochek dizaina na sfere”, Izv. RAN. Ser. matem., 69:5 (2005), 205–224 | DOI | MR | Zbl

[3] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[4] Gorbachev D. V, Ivanov V. I., Lektsii o kvadraturnykh formulakh i ikh primenenii v ekstremalnykh zadachakh, Izd-vo TulGU, Tula, 2022, 196 pp.

[5] Gorbachev D. V, Ivanov V. I., “Odna ekstremalnaya zadacha dlya mnogochlenov, svyazannaya s kodami i dizainami”, Matem. zametki, 67:4 (2000), 508–513 | DOI | Zbl

[6] Cohn H., Kumar A., “Universally optimal distribution of points on spheres”, J. Amer. Math. Soc., 20:1 (2000), 99–148 | DOI | MR

[7] Logan B. F., “Extremal problems for positive-definite bandlimited functions. I. Eventually positive functions with zero integral”, SIAM J. Math. Anal., 14:2 (1983), 249–252 | DOI | MR | Zbl

[8] Logan B. F., “Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions”, SIAM J. Math. Anal., 14:2 (1983), 253–257 | DOI | MR | Zbl

[9] Gorbachev D., Ivanov V.I., Tikhonov S., “Uncertainty Principles for Eventually Constant Sign Bandlimited Functions”, SIAM J. Math. Anal., 52:5 (2020), 4751–4782 | DOI | MR | Zbl

[10] Ivanov V. I., “Ekstremalnye zadachi Yudina-Ermita dlya mnogochlenov”, Matem. zametki, 110:5 (2021), 789–795 | DOI | MR | Zbl