Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a7, author = {V. I. Ivanov}, title = {Lebesgue boundedness of {Riesz} potential for $(k,1)$-generalized {Fourier} transform with radial piecewise power weights}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {92--104}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/} }
TY - JOUR AU - V. I. Ivanov TI - Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights JO - Čebyševskij sbornik PY - 2022 SP - 92 EP - 104 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/ LA - ru ID - CHEB_2022_23_4_a7 ER -
V. I. Ivanov. Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 92-104. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/
[1] Hardy G. H., Littelwood J. E., “Some properties of fractional integrals, I”, Math. Zeit., 27 (1928), 565–606 | DOI | MR
[2] Soboleff S., “On a theorem in functional analysis”, Rec. Math. [Mat. Sbornik] N.S., 4(46):3 (1938), 471–497 | Zbl
[3] Stein E. M., Weiss G., “Fractional integrals on n-dimensional Euclidean space”, J. Math. Mech., 7:4 (1958), 503–514 | MR | Zbl
[4] Gorbachev D.V, Ivanov V.I., “Vesovye neravenstva dlya potentsiala Danklya–Rissa”, Chebyshevckii sbornik, 20:1 (2019), 131–147 | DOI | Zbl
[5] Dunkl C. F., “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138 (1992), 123–138 | DOI | MR | Zbl
[6] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2003, 93–135 | DOI | MR | Zbl
[7] Thangavelu S., Xu Y., “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | DOI | MR | Zbl
[8] Gorbachev D. V., Ivanov V. I., Tikhonov S.Yu., Riesz potential and maximal function for Dunkl transform, Barcelona, 2018, 28 pp.
[9] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Riesz potential and maximal function for Dunkl transform”, Potential Analysis, 55:5 (2021), 555–605 | MR
[10] Ben Saïd S., Kobayashi T., Orsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl
[11] Ben Sa\"{i}d S., Deleaval L., “Translation operator and maximal function for the $(k,1)$-generalized Fourier transform”, Journal of Functional Analysis, 279:8 (2020), 108706 | DOI | MR | Zbl
[12] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Pitt's Inequalities and Uncertainty Principle for Generalized Fourier Transform”, International Mathematics Research Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl
[13] Ivanov V. I., “Ogranichennyi operator sdviga dlya $(k, 1)$-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 21:4 (2020), 85–96 | DOI | MR | Zbl
[14] Ivanov V. I., “Svoistva i primenenie polozhitelnogo operatora sdviga dlya $(k,1)$-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 22:4 (2021), 136–152 | MR
[15] Ivanov V. I., “Potentsial Rissa dlya $(k,1)$-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 22:4 (2021), 114–135 | MR
[16] Sinnamon G, Stepanov V. D., “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc., 54:2 (1996), 89–101 | DOI | MR | Zbl
[17] Kufner A., Opic B., Hardy-type inequalities, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Harlow, 1990, 333 pp. | MR | Zbl
[18] Kufner A., Persson L. E., Weighted inequalities of Hardy type, World Scientific hrblishing Co. Pte. Ltd, Singopure-London, 2003, 358 pp. | MR | Zbl