Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 92-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

In spaces with weight $|x|^{-1}v_k(x)$, where $v_k(x)$ is the Dunkl weight, there is the $(k,1)$-generalized Fourier transform. Harmonic analysis in these spaces is important, in particular, in problems of quantum mechanics. Recently, for the $(k,1)$-generalized Fourier transform, the Riesz potential was defined and the $(L^p,L^q)$-inequality with radial power weights was proved for it, which is an analogue of the well-known Stein–Weiss inequality for the classical Riesz potential and the Dunkl–Riesz potential. In the paper, this result is generalized to the case of radial piecewise power weights. Previously, a similar inequality was proved for the Dunkl–Riesz potential.
Keywords: $(k,1)$-generalized Fourier transform, Riesz potential.
@article{CHEB_2022_23_4_a7,
     author = {V. I. Ivanov},
     title = {Lebesgue boundedness of {Riesz} potential for $(k,1)$-generalized {Fourier} transform with radial piecewise power weights},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {92--104},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 92
EP  - 104
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/
LA  - ru
ID  - CHEB_2022_23_4_a7
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights
%J Čebyševskij sbornik
%D 2022
%P 92-104
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/
%G ru
%F CHEB_2022_23_4_a7
V. I. Ivanov. Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 92-104. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a7/

[1] Hardy G. H., Littelwood J. E., “Some properties of fractional integrals, I”, Math. Zeit., 27 (1928), 565–606 | DOI | MR

[2] Soboleff S., “On a theorem in functional analysis”, Rec. Math. [Mat. Sbornik] N.S., 4(46):3 (1938), 471–497 | Zbl

[3] Stein E. M., Weiss G., “Fractional integrals on n-dimensional Euclidean space”, J. Math. Mech., 7:4 (1958), 503–514 | MR | Zbl

[4] Gorbachev D.V, Ivanov V.I., “Vesovye neravenstva dlya potentsiala Danklya–Rissa”, Chebyshevckii sbornik, 20:1 (2019), 131–147 | DOI | Zbl

[5] Dunkl C. F., “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138 (1992), 123–138 | DOI | MR | Zbl

[6] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2003, 93–135 | DOI | MR | Zbl

[7] Thangavelu S., Xu Y., “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | DOI | MR | Zbl

[8] Gorbachev D. V., Ivanov V. I., Tikhonov S.Yu., Riesz potential and maximal function for Dunkl transform, Barcelona, 2018, 28 pp.

[9] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Riesz potential and maximal function for Dunkl transform”, Potential Analysis, 55:5 (2021), 555–605 | MR

[10] Ben Saïd S., Kobayashi T., Orsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl

[11] Ben Sa\"{i}d S., Deleaval L., “Translation operator and maximal function for the $(k,1)$-generalized Fourier transform”, Journal of Functional Analysis, 279:8 (2020), 108706 | DOI | MR | Zbl

[12] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Pitt's Inequalities and Uncertainty Principle for Generalized Fourier Transform”, International Mathematics Research Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl

[13] Ivanov V. I., “Ogranichennyi operator sdviga dlya $(k, 1)$-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 21:4 (2020), 85–96 | DOI | MR | Zbl

[14] Ivanov V. I., “Svoistva i primenenie polozhitelnogo operatora sdviga dlya $(k,1)$-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 22:4 (2021), 136–152 | MR

[15] Ivanov V. I., “Potentsial Rissa dlya $(k,1)$-obobschennogo preobrazovaniya Fure”, Chebyshevskii sbornik, 22:4 (2021), 114–135 | MR

[16] Sinnamon G, Stepanov V. D., “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc., 54:2 (1996), 89–101 | DOI | MR | Zbl

[17] Kufner A., Opic B., Hardy-type inequalities, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, Harlow, 1990, 333 pp. | MR | Zbl

[18] Kufner A., Persson L. E., Weighted inequalities of Hardy type, World Scientific hrblishing Co. Pte. Ltd, Singopure-London, 2003, 358 pp. | MR | Zbl