The inverse problem for a basic monoid of type $q$
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 64-76
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper for an arbitrary basic monoid ${M(\mathbb{P}(q))}$ of type $q$ the inverse problem is solved, that is, finding the asymptotics for the distribution function of the elements of the monoid ${M(\mathbb{P}(q))}$, based on the asymptotics of the distribution of pseudo-prime numbers $\mathbb{P}(q)$ of type $q$.
To solve this problem, we consider two homomorphisms of the main monoid ${M(\mathbb{P}(q))}$ of type $q$ and the distribution problem reduces to the additive Ingham problem.
It is shown that the concept of power density does not work for this class of monoids. A new concept of $C$ logarithmic $\theta$-power density is introduced.
It is shown that any monoid ${M(\mathbb{P}(q))}$ for a sequence of pseudo-simple numbers $\mathbb{P}(q)$ of type $q$ has upper and lower bounds for the element distribution function of the main monoid ${M(\mathbb{P}(q))}$ of type $q$.
It is shown that if $C$ is a logarithmic $\theta$-power density for the main monoid ${M(\mathbb{P}(q))}$ of the type $q$ exists, then $\theta=\frac{1}{2}$ and for the constant $C$ the inequalities are valid $ \pi\sqrt{\frac{1}{3\ln q}}\le C\le \pi\sqrt{\frac{2}{3\ln q}}. $
The results obtained are similar to those previously obtained by the authors when solving the inverse problem for monoids generated by an arbitrary exponential sequence of primes of type $q$.
For basic monoids ${M(\mathbb{P}(q))}$ of the type $q$, the question remains open about the existence of a $C$ logarithmic $\frac{1}{2}$-power density and the value of the constant $C$.
Keywords:
Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, exponential sequence of primes, the basic monoid ${M(\mathbb{P}(q))}$ of type $q$, $C$ logarithmic $\theta$-power density.
@article{CHEB_2022_23_4_a5,
author = {N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
title = {The inverse problem for a basic monoid of type $q$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {64--76},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a5/}
}
TY - JOUR AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii TI - The inverse problem for a basic monoid of type $q$ JO - Čebyševskij sbornik PY - 2022 SP - 64 EP - 76 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a5/ LA - ru ID - CHEB_2022_23_4_a5 ER -
N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. The inverse problem for a basic monoid of type $q$. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 64-76. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a5/