Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a4, author = {V. A. Gorelik and T. V. Zolotova}, title = {The total method of {Chebyshev} interpolation in the problem of constructing a linear regression}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {52--63}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a4/} }
TY - JOUR AU - V. A. Gorelik AU - T. V. Zolotova TI - The total method of Chebyshev interpolation in the problem of constructing a linear regression JO - Čebyševskij sbornik PY - 2022 SP - 52 EP - 63 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a4/ LA - ru ID - CHEB_2022_23_4_a4 ER -
V. A. Gorelik; T. V. Zolotova. The total method of Chebyshev interpolation in the problem of constructing a linear regression. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 52-63. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a4/
[1] Eremin I. I., Theory of linear optimization. Inverse and ill-posed problems series, VSP, Utrecht–Boston–Koln–Tokyo, 2002 | MR
[2] Gorelik V. A., “Matrichnaya korrektsiya zadachi lineinogo programmirovaniya s nesovmestnoi sistemoi ogranichenii”, Zhurn. vychisl. matem. i matem. fizika, 41:11 (2001), 1697–1705 | MR | Zbl
[3] Gorelik V. A., Erokhin V. I., Optimalnaya matrichnaya korrektsiya nesovmestnykh sistem lineinykh algebraicheskikh uravnenii po minimumu evklidovoi normy, VTs RAN, M., 2004 | MR
[4] Gorelik V. A., Erokhin V. I. Pechenkin R. V., Chislennye metody korrektsii nesobstvennykh zadach lineinogo programmirovaniya i strukturnykh sistem uravnenii, VTs RAN, M., 2006
[5] Gorelik V. A., Trembacheva O. S., “Reshenie zadachi lineinoi regressii s ispolzovaniem metodov matrichnoi korrektsii v metrike $l_1$”, Zhurn. vychisl. matem. i matem. fizika, 56:2 (2016), 202–207 | DOI | Zbl
[6] Back A., “The matrix-restricted total least squares problem”, Signal Process, 87:10 (2007), 2303–2312 | DOI
[7] Hnětynková I., Plešinger M., Sima D. M., Starakoš Z., Van Huffel S., “The total least squares problem in $AX \approx B$: A new classification with the relationship to the classical works”, SIAM Journal on Matrix Analysis and Applications, 32:3 (2011), 748–770 | DOI | MR
[8] Hnětynková I., Plešinger M., Žáková J., “On TLS formulation and core reduction for data fitting with generalized models”, Linear Algebra and Its Applications, 577 (2019), 1–20 | DOI | MR
[9] Hnětynková I., Plešinger M., Žáková J., “Solvability classes for core problems in matrix total least squares minimization”, Applications of Mathematics, 64:2 (2019), 103–128 | DOI | MR
[10] Markovsky I., Van Huffel S., “Overview of total least-squares methods”, Signal Processing, 87:10 (2007), 2283–2302 | DOI | Zbl
[11] Meng L., Zheng B., Wei Y., “Condition numbers of the multidimensional total least squares problems having more than one solution”, Numerical Algorithms, 84:3 (2020), 887–908 | DOI | MR | Zbl
[12] Shklyar S., “Consistency of the total least squares estimator in the linear errors-in-variables regression”, Modern Stochastics: Theory and Applications, 5:3 (2018), 247–295 | DOI | MR | Zbl
[13] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, MTsNMO, M., 2016
[14] Gorelik V. A., Zolotova T. V., “Method of parametric correction in data transformation and approximation problems”, Lecture Notes in Computer Science (LNCS), 12422, 2020, 122–133 | DOI | MR
[15] Regiony Rossii. Sotsialno-ekonomicheskie pokazateli, 2019 (Data obrascheniya: 30 oktyabrya 2021) https://rosstat.gov.ru