Evolution of the main provisions of the theory of stability
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 327-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the work is to study the evolution of the concept of stability, which is a structure-forming concept in all areas of science and technology, and even beyond them. The stages of this long evolution corresponded to the dominant trends in the mathematics of their time. By the end of the XIX century. the complexity of the concept of stability was realized, the question arose of a mathematically rigorous approach to the problem. A general theory of motion stability was built on a solid mathematical foundation. This became a milestone not only in the development of the subject itself, but was one of the foundations for constructing a qualitative theory. Subsequently, the theory of stability was divided into two branches: one - the expansion of the theory in breadth based on old ideas, strengthening the links with applications; the other is stability in the context of the theory of dynamical systems. In the latter case, stable movements are considered in the series of all movements; in the stability-instability dichotomy both poles are equal and meaningful. Instability also turns out to be a complex concept that has a variety of forms. Instability has acquired a constructive meaning; it ensures innovation and development. Typical is the coexistence of stability and instability with a complex topology of such a structure. Diverse types of instability demonstrate the phenomenon of turbulence. The study of this phenomenon at the modern level requires the use of mathematics according to the canons of rigor adopted in mathematics itself. One can raise the question of the limits of applicability of the possibilities of the most qualitative description and the concept of stability. In this regard, there are first results, new ideas are required.
Keywords: stability, perturbation, stability criterion, dynamical system, instability, turbulence.
@article{CHEB_2022_23_4_a26,
     author = {R. R. Mukhin},
     title = {Evolution of the main provisions of the theory of stability},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {327--349},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a26/}
}
TY  - JOUR
AU  - R. R. Mukhin
TI  - Evolution of the main provisions of the theory of stability
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 327
EP  - 349
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a26/
LA  - ru
ID  - CHEB_2022_23_4_a26
ER  - 
%0 Journal Article
%A R. R. Mukhin
%T Evolution of the main provisions of the theory of stability
%J Čebyševskij sbornik
%D 2022
%P 327-349
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a26/
%G ru
%F CHEB_2022_23_4_a26
R. R. Mukhin. Evolution of the main provisions of the theory of stability. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 327-349. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a26/

[1] Leine R. L., “The historical development of classical stability concepts: Lagrange, Poisson, Lyapunov stability”, Nonlinear Dyn., 59 (2010), 173–182 | DOI | MR | Zbl

[2] Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma libo minimuma ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle Leonarda Eilera, korolevskogo professora i chlena Imperatorskoi Peterburgskoi Akademii nauk, GTTI, M.-L., 1934, 603 pp.

[3] Euler L., Scintia novalis seu tractatus de consruendis ac dirigendis, Academiae Scientarum, St. Petersburg, 1749, 536 pp.

[4] Lagrange J. L., “Sur le principe des vitesse virtuelles”, Oeuvres de Lagrange, VII, Gautier-Villars, Paris, 1877, 317–321 | MR

[5] J. L. Lagrange, Mécanique analiytique, v. I, Paris, 1811, 422 pp. | MR

[6] Lagranzh Zh. L., Analiticheskaya mekhanika, v. 1, GITTL, M.–L., 1950, 594 pp.

[7] Lejeune-Dirichlet P. G., “Über die Stabilität des Gleichgewichts”, CRELLE, J. Reine Angew. Math., 32 (1846), 85–88 | MR

[8] Lezhen-Dirikhle P. G., “Ob ustoichivosti ravnovesiya”, Lagranzh Zh. Analiticheskaya mekhanika, 1950, 537–540, GITTL, M.–L.

[9] Lagrange J. L., “Sur le movement des noeuds des orbits planétaires”, Mém. Acad. Sci., 1774, 276–307

[10] Lagrange J. L., “Théorie des variations séculaires des élements des planétes”, Oeuvres de Lagrange, V, Gautier-Villars, Paris, 1870, 127–207 ; 208–344 | MR

[11] Laplace P. S., “Sur le principe de la gravitation universelle et sur le inegalité séculaires des planétes qui en dépendent”, Oeuvres de Laplace, VIII, Gautier-Villars, Paris, 1841, 201–275

[12] Laplace P. S., “Sur le équation séculaire de la lune”, Mém. Acad. Sci., 1788, 243–271

[13] Poisson S. D., “Mémoire sur les inegalité séculaires des moyens mouvements des planétes”, J. Ecole Polytech., XV (1808), 1–56

[14] Einshtein A., Infeld L., Evolyutsiya fiziki, Gostekhizdat, M., 1965, 328 pp.

[15] Thomson W., Tait P. G., Treatise on Natural Philosophy, Clarendon Press, Oxford, 1867, xxiii+737 pp.

[16] Wise N. M., William Thomson and Peter Guthrie Tait, “Treatise on Natural Philosophy. First edition (1867)”, Landmark Writings in Western Mathematics 1640-1940, ed. I. Grattan-Guinnes, Elsivier, Amsterdam, 2005, 521–533 | DOI | MR

[17] Routh E. G., A treatise of stability of a given state of motion, Macmillan and Com., L., 1877, 129 pp.

[18] Poincaré H., “Memoire sur les courbes définies par une équations differentielle”, J. math. pures et appl. Sér. 3, 7 (1881), 375–422 ; 8 (1882), 251-296; J. math. pures et appl. Sér. 4, 1 (1885), 167–244; 2 (1886), 151–217 | MR

[19] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M., 1947, 392 pp.

[20] Puankare A., Izbr. trudy, V 3 t., v. 2, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 998 pp. | MR

[21] Zhukovskii N. E., “O prochnosti dvizheniya”, Soch. N. E. Zhukovskogo, v. 1, Tipografiya Imperator. Mosk. Un-ta, M., 1912, 194–296

[22] Leonov G. A., Burkin I. M., Shepeljavyi A. I., Frequently methods in oscillation theory, Mathematics and its applications, 357, Kluwer Academic, Dordrecht, 1996, 403 pp. | MR

[23] Lyapunov A. M., “Obschaya zadacha ob ustoichivosti dvizheniya”, Izbr. trudy: raboty po teorii ustoichivosti, Nauka, M., 2007, 27–298 | MR

[24] Hurvitz W. A., “The Chicago Colloquium”, Bull. AMS, 27 (1920), 65–71 | DOI | MR

[25] Birkhoff G. D., Dynamical Systems, AMS, Providence, Rhod Island, 1927, ix+295 pp. ; Dzh. Birkgof, Dinamicheskie sistemy, Per. s angl., RKhD, Izhevsk, 1999, 408 pp. | MR

[26] Birkhoff G. D., “Surface transformations and their dynamical applications”, Coll. Math. Papers, v. II, AMS, N.Y., 1950, 111–229 | MR

[27] Levi-Civita T., “Sopra alcuni criteri di instabilita”, Annali di Math. Ser. III, 5 (1901), 221–308

[28] Moiseev N. D., Ocherki razvitiya teorii ustoichivosti, Gostekhizdat, M.–L., 1949, 663 pp.

[29] A. G. Kurosh (red.), Matematika v SSSR za sorok let 1917-1957, v. 1, Gos. izd-vo fiz.-mat. literatury, M., 1959, 1000 pp. | MR

[30] Grigoryan A. T., Pogrebysskii I. B., Istoriya mekhaniki s kontsa XVIII veka do serediny XX veka, Nauka, M., 1972, 417 pp. | MR

[31] Chetaev N. G., “Odna teorema o neustoichivosti”, DAN SSSR, 1 (1934), 529–530

[32] Chetaev N. G., Ustoichivost dvizheniya. Raboty po analiticheskoi mekhanike, Izd-vo AN SSSR, M., 1962, 535 pp. | MR

[33] Poincaré H., “Sur l'équilibre d'un masse fluide animée d'un mouvement de rotation”, Acta. Math., 7 (1885), 259–380 ; Oeuvres de Henri Poincaré, VII, Gautier-Villars, Paris, 1952, 40–140 | DOI | MR | MR

[34] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–252 | MR

[35] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl

[36] Andronov A. A., “Matematicheskie problemy teorii avtokolebanii”, I Vsesoyuzn. konf. po kolebaniyam, v. I, Gostekhteorizdat, M., 1933, 32–71

[37] Smale S., “A structurally stable differential homomorphysm with an innite number of periodic points”, Trudy mezhd. simp. po nelin. kolebaniyam (1961), AN USSR, Kiev, 1963, 365–366 | MR

[38] Bylov B. F., Vinograd R. E., Grobman D. N., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966, 576 pp. | MR

[39] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Mathem. Zeitschr., 31 (1930), 748–766 | DOI | MR

[40] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Tr. Mosk. mat. obschestva, 19, 1968, 179–210 | Zbl

[41] Millionschikov M. D., “Kriterii ustoichivosti veroyatnostnogo spektra lineinykh sistem differentsialnykh uravnenii s rekurrentnymi koeffitsientami i kriterii pochti privodimosti sistem s pochti periodicheskimi koeffitsientami”, Mat. sb., 78:2 (1969), 179–202 | MR

[42] Arnold V. I., “O neustoichivosti dinamicheskikh sistem so mnogimi stepenyami svobody”, DAN SSSR, 156:1 (1964), 9–12 | Zbl

[43] Zaslavskii G. M., Zakharov M. Yu., Sagdeev R. Z., Usikov D. A., Chernikov A. A., “Generatsiya uporyadochennykh struktur s osyu simmetrii iz gamiltonovoi dinamiki”, Pisma v ZhETF, 144:7 (1986), 349–353

[44] Zaslavskii G. M., Zakharov M. Yu., Sagdeev R. Z., Usikov D. A., Chernikov A. A., “Stokhasticheskaya pautina i diffuziya chastits v magnitnom pole”, ZhETF, 91:5 (1986), 500–516 | MR

[45] Zaslavskii G. M., Sagdeev R. Z., Usikov D. A., Chernikov A. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, M., 1991, 236 pp. | MR

[46] Stephenson A., “On a class of forced oscillations”, Quart. J. Pure and Appl. Math., 37:148 (1906), 353–360

[47] Bogolyubov N. N., “Teoriya vozmuschenii v nelineinoi mekhanike”, Sb. trudov In-ta stroit. mekhaniki AN USSR, 14 (1950), 9–34

[48] Kapitsa P. L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, ZhETF, 21:5 (1951), 588–597 | MR

[49] Bogatov E. M., Mukhin R. R., “Metod usredneniya, mayatnik s vibriruyuschim podvesom: N. N. Bogolyubov, A. Stefenson, P. L. Kapitsa i drugie”, Izv. vuzov «PND», 25:5 (2017), 69–87

[50] Chelomei V. N., “O vozmozhnosti povysheniya ustoichivosti uprugikh sistem pri pomoschi vibratsii”, DAN SSSR, 110:3 (1956), 345–347

[51] Chelomei V. N., “Paradoksy v mekhanike, vyzyvaemye vibratsiyami”, DAN SSSR, 270:1 (1983), 62–67

[52] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986, 736 pp. | MR

[53] Goldstein S., “Fluid mechanics in the first half of this century”, Annu. Rev. Fluid Mech., 1 (1969), 1–29 | DOI

[54] Marsden Dzh., “Sootnoshenie mezhdu uravneniyami Nave-Stoksa i turbulentnostyu”, Strannye attraktory, Mir, M., 1981, 7–20

[55] Sommerfeld A., “Ein Beitrag zur hydrodyhamischen Erklärung der turbulenten Flussigkeitsbewegungen”, Proc. 4th Int. Congr. (Rome, 1908), 116–124

[56] Orr W., “The stability or instability of the steady motions of a liquid”, Proc. Roy. Irish Acad. A, 27 (1906), 9–68; 69–138

[57] Heisenberg W., “Über Stabilität und Turbulenz von Flissigkeitsströmen”, Ann. der Phys., 74:15 (1924), 577–624 | DOI

[58] Lyapunov A. M., “Ob odnoi zadache Chebysheva”, Zap. Akad. Nauk po Fiz.-mat. otd. 8 ser., 17:3 (1905), 1–32; А.М. Ляпунов, Собр. Соч., т. 3, Изд-во АН СССР, М.–Л., 1959, 207–236 | MR

[59] Leray J., “Etude de diverses équations intégrals non linéarais et de quelques problèmes que pose l'hydrodynamique”, J. Math. Pures Appl., 12 (1933), 1–82 | MR | Zbl

[60] Leray J., “Essai sur le mouvements plans d'un liquide visqueux que limitent des parios”, J. Math. Pures Appl., 13 (1934), 341–418 | MR

[61] Leray J., “Sur le mouvements d'un liquide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR

[62] Oseen C. W., Neuere Methoden und Ergebnisse in der Hydrodynamik, Academie Verlag, Leipzig, 1927, 337 pp.

[63] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR

[64] Hopf E., “Über die Anfangswertaufgabe für die hydrodynamischen Gundgleichungen”, Math. Nachrich., 4 (1951), 213–231 | DOI | MR | Zbl

[65] Ladyzhenskaya O. A., Attractors for Semigroups and Evolution Equations. Lincei Lectures, CUP, Cambridge, 1991, 73 pp. | MR

[66] Scheffer V., “Turbulence and Hausdorff dimension”, Turbulence and Navier-Stokes equations, Proc. Conf. (Univ. Paris-Sud, Orsay, 1975), Springer Verlag, Berlin, 1976, 174–183 | DOI | MR

[67] Caffarelli L., Kohn R., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier-Stokes equations”, Comm. Pure Appl. Math., 35:6 (1982), 771–831 | DOI | MR | Zbl

[68] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, v. 1, Gidrometeoizdat, S.-Pb., 1992, 692 pp.

[69] Ruelle D., Takens F., “On the Nature of Turbulence”, Comm. Math. Phys., 20 (1971), 167–192 ; Strannye attraktory, Mir, M., 1981, 117–151 | DOI | MR | Zbl

[70] Arnold V. I., “Kolmogorov's hydrodynamic attractors”, Proc. Roy. Soc. London. Ser. A, 434 (1991), 19–22 | DOI | MR | Zbl

[71] Arnold V., Khesin B., Topogical methods in hydrodynamics, Springer, N.Y., 1998, 374 pp. | MR

[72] Obukhov A. M., “Ob integralnykh invariantakh v sistemakh gidrodinamicheskogo tipa”, DAN SSSR, 184:2 (1969), 309–312 | Zbl

[73] A. M. Obukhov (red.), Nelineinye sistemy gidrodinamicheskogo tipa, Nauka, M., 1974, 160 pp.

[74] Afraimovich V. A., Shilnikov L. P., “On strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, Pitman, Boston-London-Melbourn, 1983, 1–34 | MR

[75] Zaslavsky G. M., “Chaotic Dynamics and the Origin of Statistical Laws”, Physics Today, 52 (1999), 39–45 | DOI

[76] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Ob oblastyakh Nyukhausa dvumernykh diffeomorfizmov, blizkikh k diffeomorfizmu s negrubym geteroklinicheskim konturom”, Trudy MIAN, 216, 1997, 76–125 | Zbl

[77] Gonchenko A. S., Gonchenko S. V., Kazakov O. A., Kozlov A. D., “Matematicheskaya teoriya dinamicheskogo khaosa”, Izv. vuzov. Prikl. nelin. dinamika, 25:2 (2017), 4–36

[78] Holmes P., Lumley J., Bercooz G., Rowley C., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, CUP, Cambridge, 2012, 386 pp. | MR

[79] Fomin N. N., Chechetkin V. M., “Kogerentnye gidrodinamicheskie struktury i vikhrevaya dinamika”, Preprinty IPM im. M.V. Keldysha RAN, 2015, 001

[80] Shilnikov L. P., “Gomoklinicheskie traektorii: ot Puankare do nashikh dnei”, Matematicheskie sobytiya KhKh veka, Fazis, M., 2003, 465–489

[81] Gonchenko S. V., Turaev D. B., Shilnikov L. P., “Gomoklinicheskie kasaniya proizvolnogo poryadka v oblastyakh Nyukhausa”, Sovr. matematika i ee prilozh., 67 (1999), 69–128 | Zbl