Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 285-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the limit plastic state and localization of plastic deformations along shear bands in dilating media with a non-associative flow rule. The equations of the characteristics of systems of equations for stresses and velocities in a plane strain state for an arbitrary function of the yield surface dependenе on the first two invariants in the rigid-plastic framework are obtained. Equations for stresses along the characteristics for the limit state and the condition of their hyperbolicity are obtained. A numerical model of the solution of the elastic-plastic problem by Galerkin equations on high-order spectral elements is presented. Numerical experiments have been carried out for the linear function of the yield surface in order to establish the boundaries of the range of possible slopes of the shear bands and to test the theoretical results.
Keywords: strain localization, shear band, plasticity, finite elements, spectral elements.
@article{CHEB_2022_23_4_a24,
     author = {V. A. Levin and K. Yu. Krapivin},
     title = {Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {285--307},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a24/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - K. Yu. Krapivin
TI  - Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 285
EP  - 307
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a24/
LA  - ru
ID  - CHEB_2022_23_4_a24
ER  - 
%0 Journal Article
%A V. A. Levin
%A K. Yu. Krapivin
%T Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions
%J Čebyševskij sbornik
%D 2022
%P 285-307
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a24/
%G ru
%F CHEB_2022_23_4_a24
V. A. Levin; K. Yu. Krapivin. Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 285-307. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a24/

[1] Mohr O., “Welche Umstande bedingen der Bruch und der Elastizitätsgrenze des Materials”, Z. Vereins Deutscher Ingenieure, 1524 (1900)

[2] Nadai A., Plastichnost i razrushenie tverdykh tel, v. 1, Inostrannoi literatury, M., 1954

[3] Prandtl L., “Über die Härte plastischer Körper”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1920, 74–85

[4] Hencky H., “Über Einige Statisch Bestimmte Fälle Des Gleichgewichts In Plastischen Körpern”, Z. angew. Math. Mech., 3 (1923), 241–251 | DOI

[5] H. Polaczek-Geiringer, “Beitrag zum vollstandigen ebenen Plastizitätsproblem”, Verhandlungen d. 3 Intern. Kongress f. techn. Mechank (Stockholm, 1930), 185–190

[6] S. A. Khristianovich, S.G.Milkhin, B.B. Devison, Nekotorye novye voprosy mekhaniki sploshnoi sredy, M.–L., 1938

[7] J. Mandel, Equilibre par trasches planes des solides à la limite d'écoulement, PhD thesis, Thèse, Paris, 1942 | MR

[8] Khill R., Matematicheskaya teoriya plastichnosti, Gostekhizdat, M., 1956, 408 pp.

[9] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 420 pp.

[10] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001, 704 pp.

[11] Freudenthal A.M., Geiringer H., “The Mathematical Theories of the Inelastic Continuum”, Elasticity and Plasticity / Elastizität und Plastizität, Encyclopedia of Physics / Handbuch der Physik, ed. Flügge S., Springer, Berlin, 1958 | MR

[12] Sokolovskii V. V., Statika sypuchei sredy, Fizmatlit, M., 1960, 121 pp. | MR

[13] Nemat-Nasser S., A. Shokooh, “On finite plastic flows of compressible materials with internal friction”, Int. J. Solid Struct., 16 (1980), 495–514 | DOI | MR | Zbl

[14] J. Hadamard, “A. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique”, Nature, 71 (1904), 196–197 | DOI

[15] Hill R., “A general theory of uniqueness and stability in elastic-plastic solids. 1”, J. Mech. Phys. Solids, 6 (1958), 236–249 | DOI | MR | Zbl

[16] Hill R., “Acceleration waves in solids”, J. Mech. Phys. Solids, 10 (1962), 1–16 | DOI | MR | Zbl

[17] T. Y. Thomas, Plastic Flow and Fracture in Solids, Academic Press, New York, 1961 | MR | Zbl

[18] Mandel J., “Propagation des surfaces de discontinuité dans un milieu élastoplastique”, Stress Waves in Anelastic Solids, International Union of Theoretical and Applied Mechanics, eds. Kolsky H., Prager W., Springer, 1964, 331–340 | MR

[19] J. Mandel, “Conditions de stabilité et postulat de Drucker”, Rheology and Soil Mechanics, eds. J. Kravtchenko, P.M. Sirieys, Springer, Berlin, 1966, 58–68

[20] J. W. Rudnicki, J. R. Rice, “Conditions of the localization of deformation in pressure-sensitive dilatant material”, J. Mech. Phys. Solids, 23 (1975), 371–394 | DOI

[21] Rice J.R., “The localization of plastic deformation”, Proc. Hth Int. Congr. Thcoret. Appl. Mech., ed. Koiter W. T., North-Holland, 1977, 207–220 | MR

[22] K. Runesson, N.S. Ottosen, D. Peric, “Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain”, Int. J. Plast., 7 (1991), 99–121 | DOI | Zbl

[23] K. H. Roscoe, “The Influence of Strains in Soil Mechanics”, Géotechnique, 20:2 (1970), 129–170

[24] J. R. F. Arthur, T. Dunstan, Q. A. J. L. Al-Ani, A. Assadi, “Plastic deformation and failure in granular media”, Géotechnique, 27:1 (1977), 53–74 | DOI

[25] P. A. Vermeer, “The orientation of shear bands in biaxial tests”, Géotechnique, 40:2 (1990), 223–236

[26] I. Vardoulakis, Int. J. Numer. Anal. Methods Geomech., 4 (1980), 103 | DOI | Zbl

[27] M. Ortiz, Y. Leroy, A. Needleman, “A finite element method for localized failure analysis”, Computer Methods in Applied Mechanics and Engineering, 61:2 (1987), 189–214 | DOI | Zbl

[28] Simo J.C., Oliver J., Armero F., “An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids”, Computational Mechanics, 12 (1993), 277–296 | DOI | MR | Zbl

[29] F. Armero, K. Garikipati, “An analysis of strong discontinuity in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids”, Int. J. Solids Struct., 33:20–22 (1996), 2863–2885 | DOI | MR | Zbl

[30] Jeremić B., Xenophontos C., “Application of the p-version of the finite element method to elastoplasticity with localization of deformation”, Commun. Numer. Meth. Engng., 15 (1999), 867–876 | DOI | MR | Zbl

[31] Richard A. Regueiro, Ronaldo I. Borja, “Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity”, International Journal of Solids and Structures, 38:21 (2001), 3647–3672 | DOI | Zbl

[32] Duretz T., Souche A., de Borst R., Le Pourhiet L., “The benefits of using a consistent tangent operator for viscoelastoplastic computations in geodynamics”, Geochemistry, Geophysics, Geosystems, 19 (2018), 4904–4924 | DOI

[33] Levin V.A., Zingerman K.M., Krapivin K.Yu., Yakovlev M.Ya., “Spektralnyi element Lezhandra v zadachakh lokalizatsii plasticheskikh deformatsii”, Chebyshevskii sbornik, 21:3 (2020), 306–316 | DOI | MR | Zbl

[34] Zienkiewicz O.C., Taylor R.L., Fox D.D., The finite element method for solid and structural mechanics, Seventh Edition, Elsevier, 2014 | MR | Zbl

[35] Babuška I., Suri M., “The p- and h-p versions of the finite element method, an overview”, Computer Methods in Applied Mechanics and Engineering, 80:1-3 (1990), 5–26 | DOI | MR | Zbl

[36] B. Szabó, I. Babuška, An Introduction to Finite Element Analysis, Wiley, 2011 | MR

[37] Solin P., Segeth K., Dolezel I., Higher-Order Finite Element Methods, Chapman and Hall/CRC, 2003 | DOI | MR

[38] Konovalov D., Vershinin A., Zingerman K., Levin V., “The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes”, Modelling and Simulation in Engineering, 2017 (2017), 1797561 | DOI | MR

[39] R. de Borst, M.A. Crisfield, J.J.C. Remmers and C.V. Verhoosel (eds.), “Solution Techniques in Quasi-Static Analysis”, Non-Linear Finite Element Analysis of Solids and Structures, 2012 | DOI | MR

[40] Babuška I., Suri M., “Locking effects in the finite element approximation of elasticity problems”, Numer. Math., 62 (1992), 439–463 | DOI | MR | Zbl

[41] Babuška I., Suri M., “On Locking and Robustness in the Finite Element Method”, SIAM J. Numer. Anal., 29:5 (1992), 1261–1293 | DOI | MR | Zbl

[42] De Borst R., Groen A.E., “Some observations on element performance in isochoric and dilatant plastic flow”, Int. J. Numer. Meth. Engng., 38 (1995), 2887–2906 | DOI | Zbl

[43] S. Eisenträger, E. Atroshchenko, R. Makvandi, “On the condition number of high order finite element methods: Influence of p-refinement and mesh distortion”, Computers and Mathematics with Applications, 2020 | DOI | MR

[44] E. A. de Souza Neto, D. Perić, D. R. J. Owen, Computational Methods for Plasticity: Theory and Applications, Wiley, 2008