Estimation of convergence of spectral element method in CAE Fidesys based on exact solution of the Lame problem for elastoplastic materials using an automated regression testing system
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 272-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers convergence estimation of the spectral element method implemented in CAE Fidesys. It was based on exact analytical solutions of the Lame problems in small deformations in the elastic and elastic-perfectly plastic obeying Huber-von Mises yield criterion formulations. Due to the symmetry, we consider quarters of the models. Numerical results were obtained in the CAE Fidesys strength analysis system using the finite element method for the first and second orders and the spectral element method for the third to ninth orders. Based on the results obtained, an analysis was carried out to determine the nature of the decrease in the errors of the CAE Fidesys spectral element method with an increase in the order of the elements. The study was conducted using a specialized automated testing system. The results of the work can be useful in making a decision on the use of the spectral element method in industrial calculations.
Keywords: automated testing system, autotests, finite element method, spectral element method, exponential convergence, CAE Fidesys, elastoplastic model, Lame problem, curvilinear boundaries.
@article{CHEB_2022_23_4_a23,
     author = {V. A. Levin and V. V. Kozlov and E. D. Komolova and A. V. Filatova and M. A. Kartsev},
     title = {Estimation of convergence of spectral element method in {CAE} {Fidesys} based on exact solution of the {Lame} problem for elastoplastic materials using an automated regression testing system},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {272--284},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a23/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - V. V. Kozlov
AU  - E. D. Komolova
AU  - A. V. Filatova
AU  - M. A. Kartsev
TI  - Estimation of convergence of spectral element method in CAE Fidesys based on exact solution of the Lame problem for elastoplastic materials using an automated regression testing system
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 272
EP  - 284
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a23/
LA  - ru
ID  - CHEB_2022_23_4_a23
ER  - 
%0 Journal Article
%A V. A. Levin
%A V. V. Kozlov
%A E. D. Komolova
%A A. V. Filatova
%A M. A. Kartsev
%T Estimation of convergence of spectral element method in CAE Fidesys based on exact solution of the Lame problem for elastoplastic materials using an automated regression testing system
%J Čebyševskij sbornik
%D 2022
%P 272-284
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a23/
%G ru
%F CHEB_2022_23_4_a23
V. A. Levin; V. V. Kozlov; E. D. Komolova; A. V. Filatova; M. A. Kartsev. Estimation of convergence of spectral element method in CAE Fidesys based on exact solution of the Lame problem for elastoplastic materials using an automated regression testing system. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 272-284. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a23/

[1] Levin V. A., Zingerman K. M., Yakovlev M. Ya., Kurdenkova E. O., Nemtinova D. V., “O chislennoi otsenke effektivnykh kharakteristik periodicheskikh yacheistykh struktur s ispolzovaniem balochnykh i obolochechnykh konechnykh elementov s pomoschyu CAE Fidesys”, Chebyshevskii sbornik, 20:2 (2019), 528–541 | DOI | MR

[2] Vershinin A. V., Zingerman K. M., Konovalov D. A., Levin V. An., “Chislennoe modelirovanie v CAE Fidesys protsessa additivnogo proizvodstva na osnove metoda spektralnykh elementov na nekonformnykh setkakh”, Sovremennye problemy matematiki i mekhaniki, Materialy mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu akademika V. A. Sadovnichego, v. 2, 2019, 642–647

[3] Levin V. A., “Teoriya mnogokratnogo nalozheniya bolshikh deformatsii, razvitie dlya resheniya mezhdistsiplinarnykh zadach. Puti ee realizatsii v pakete Fidesis dlya provedeniya prochnostnogo analiza v novykh otraslyakh promyshlennosti”, Chebyshevskii sbornik, 18:3 (2017), 518–537 | DOI

[4] Kukushkin A. V., Konovalov D. A., Vershinin A. V., Levin V. A., “Numerical simulation in CAE Fidesys of bonded contact problems on non-conformal meshes”, Journal of Physics: Conference Series, 1158:2 (2019), 032022 | DOI

[5] Ofitsialnyi sait OOO «Fidesis», (data obrascheniya 15.09.2022) https://www.cae-fidesys.com/documentation

[6] Morozov E. M., Levin V. A., Vershinin A. V., Prochnostnoi analiz: Fidesis v rukakh inzhenera, LENAND, M., 2015, 408 pp.

[7] Gorbachenko I. M., “Otsenka kachestva programmnogo obespecheniya dlya sozdaniya sistem testirovaniya”, Fundamentalnye issledovaniya, 2013, no. 6-4, 823–827

[8] Prokhorenok N. A., Python 3 i PyQt. Razrabotka prilozhenii, BKhV-Peterburg, SPb., 2012, 704 pp.

[9] Makkini U., Python i analiz dannykh, per. s ang. A. A. Slinkina, DMK Press, M., 2020, 540 pp.

[10] Kalitkin N. N., Chislennye metody, Vyssh. Shk, M., 1976, 398 pp.

[11] A. A. Amosov, Yu. A. Dubinskii, N. V. Kopchenova, Vychislitelnye metody dlya inzhenerov, ucheb. posobie, Vyssh. shk., M., 1994, 544 pp.

[12] Zienkiewicz O. C., Taylor R. L., Zhu J. Z., The Finite Element Method: Its Basis and Fundamentals, 7th edition, Butterworth-Heinemann, Oxford, United Kingdom, 2013, 756 pp. | DOI | MR | Zbl

[13] Fish J., Belutschko T., A First Course in Finite Elements, John Wiley Sons Ltd, New York, 2007, 319 pp. | DOI | MR | Zbl

[14] Vershinin A. V., Levin V. A., Kukushkin A. V., Konovalov D. A., “Structural analysis of assemblies using non-conformal spectral element method”, IOP Conf. Ser.: Mater. Sci. Eng., 747 (2020), 012033 | DOI

[15] Orel B., Perne A., “Chebyshev-Fourier Spectral Methods for Nonperiodic Boundary Value Problems”, Journal of Applied Mathematics, 2014, 1–10 | DOI | MR

[16] Petrovskiy K. A., Vershinin A. V., Levin V. A., “Application of spectral elements method to calculation of stress-strain state of anisotropic laminated shells”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012077 | DOI

[17] Karpenko V. S., Vershinin A. V., Levin V. A., Zingerman K. M., “Some results of mesh convergence estimation for the spectral element method of different orders in FIDESYS industrial package”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012049 | DOI

[18] Konovalov D., Vershinin A., Zingerman K., Levin V., “The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes”, Modelling and Simulation in Engineering, 2017, 1797561 | DOI

[19] Solin P., Segeth K., Dolezel I., Higher-Order Finite Element Methods, Chapman Hall/CRC Press, 2003, 408 pp. | MR

[20] Kozlov V. V, Komolova E. D., Filatova A. V., “Ispolzovanie sistemy avtotestov CAE Fidesys dlya otsenki skhodimosti metoda spektralnykh elementov k tochnomu resheniyu pri povyshenii poryadka elementov”, Lomonosovskie chteniya. Nauchnaya konferentsiya. Sektsiya mekhaniki, Tezisy dokladov (20-26 aprelya 2021 goda), Izd-vo MGU, M., 2021, 114–115

[21] Kozlov V. V., Komolova E. D., Kartsev M. A., Filatova A. V., “Analysis of the capabilities of the spectral element method in solving physically and geometrically nonlinear problems of mechanics using the CAE Fidesys package”, Continuum Mech. Thermodyn., 2022 | DOI | MR

[22] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1970, 568 pp. | MR

[23] Kachanov L. M., Foundations of the Theory of Plasticity, North-Holland, Amsterdam, 1971, 482 pp. | DOI | MR | Zbl

[24] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains”, International Journal of Solids and Structures, 67–68 (2015), 244–249 | DOI | MR

[25] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains. Part 2. Solution for different types of incompressible materials”, International Journal of Solids and Structures, 100–101 (2016), 558–565 | DOI

[26] Levin V. A., Zubov L. M., Zingerman K. M., “Exact solution of the nonlinear bending problem for a composite beam containing a prestressed layer at large strains”, Doklady Physics, 60 (2015), 24–27 | DOI

[27] Zingerman K. M., Levin V. A., “Some qualitative effects in the exact solutions of the Lamé problem for large deformations”, Journal of Applied Mathematics and Mechanics, 76 (2012), 205–219 | DOI | MR | Zbl

[28] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution to the problem of biaxial loading of a micropolar elastic plate made by joining two prestrained arc-shaped layers under large strains”, European Journal of Mechanics, A/Solids, 88 (2021), 104237 | DOI | MR | Zbl

[29] Levin V. A., Podladchikov Y. Y., Zingerman K.M., “An exact solution to the Lame problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations”, European Journal of Mechanics, A/Solids, 90 (2021), 104345 | DOI | MR | Zbl

[30] Levin V. A., Zubov L. M., Zingerman K. M., “Large bending strains in an orthotropic beam with a preliminarily stretched or compressed layer: Exact solution”, Doklady Physics, 61 (2016), 407–411 | DOI | MR