Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 262-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to one of the problems of the theory of superimposed large deformations. An algorithm for the exact solution of the problem of forming an infinite circular compound cylinder from a certain finite number of hypoelastic layers is presented. The problem is formulated in a quasi-static statement. The hypoelasticity model corresponding to the material of the cylindrical layers is described by the equations of state with the participation of the corotational Dienes derivative. When attached, each successive layer undergoes two phases of deformation over some time intervals. The first phase of deformation is the radial expansion or contraction of the cylindrical layer. The second phase of deformation is torsion. Each successive layer is attached to the composite hypoelastic cylindrical body after the deformation of the previous layer is completed. At the same time, the deformation of each hypoelastic layer affects the general state of the composite cylinder, that is, all internal layers. It is required to determine the stress field in a composite nonlinearly elastic cylinder. The paper describes the notation and coordinate systems used in solving the problem. All the main steps for solving the problem are described, including the calculation of the stress tensor components. The formulas for the axial force and torque of a compound cylinder are also given. Numerical studies have been carried out. The results of numerical studies - graphs of the dependence of the axial force and torque on the deformation parameters - are presented at the end of the work.
Keywords: hypoelastic material, multilayer cylinder, tension-compression, torsion, superposition of large strains, exact analytical solution.
@article{CHEB_2022_23_4_a22,
     author = {V. A. Levin and A. V. Vershinin and K. M. Zingerman and D. R. Biryukov},
     title = {Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - A. V. Vershinin
AU  - K. M. Zingerman
AU  - D. R. Biryukov
TI  - Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 262
EP  - 271
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/
LA  - ru
ID  - CHEB_2022_23_4_a22
ER  - 
%0 Journal Article
%A V. A. Levin
%A A. V. Vershinin
%A K. M. Zingerman
%A D. R. Biryukov
%T Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material
%J Čebyševskij sbornik
%D 2022
%P 262-271
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/
%G ru
%F CHEB_2022_23_4_a22
V. A. Levin; A. V. Vershinin; K. M. Zingerman; D. R. Biryukov. Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 262-271. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/

[1] Martynova E.D., “Protsessy krucheniya tsilindricheskikh obraztsov iz neszhimaemykh vyazkouprugikh materialov Maksvellovskogo tipa”, Prikladnaya matematika i mekhanika, 83:1 (2019), 95–106 | DOI | Zbl

[2] Ovchinnikova N.V., “Zadacha o kruchenii gipouprugogo neszhimaemogo tsilindra”, Mezhvuzovskii sbornik nauchnykh trudov, Matematicheskoe modelirovanie i eksperimentalnaya mekhanika deformiruemogo tverdogo tela, 3, Tverskoi gosudarstvennyi tekhnicheskii universitet, Tver, 2020, 65–72

[3] Levin V.A., Zubov L.M., Zingerman K.M., “Torsion of a Composite Nonlinear Elastic Cylinder with Inclusion at Large Initial Deformations”, International Journal of Solids and Structures, 51:6 (2014), 1403–1409 | DOI | MR

[4] Levin V.A., Zubov L.M., Zingerman K.M., “Torsion of a Composite Nonlinear Elastic Cylinder with a Prestressed Inclusion”, Doklady Physics, 58:12 (2013), 540–543 | DOI | MR

[5] Levin V.A., Zubov L.M., Zingerman K.M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains”, International Journal of Solids and Structures, 67–68 (2015), 244–249 https://www.sciencedirect.com/science/article/pii/S0020768315001973?via | DOI

[6] Levin V.A., Zingerman K.M., “A class of methods and algorithms for the analysis of successive origination of holes in a pre-stressed viscoelastic body. Finite strains”, Communications in Numerical Methods in Engineering, 24:12 (2008), 2240–2251 | DOI | MR | Zbl

[7] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp.

[8] Truesdell K., A first course in rational continuum mechanics, Johns Hopkins University, Baltimore, Maryland, 1972, 592 pp. | MR

[9] Dienes J.K., “On the analysis of rotation speed and stress in deformable bodies”, Acta Mech., 32 (1979), 217–232 | DOI | MR | Zbl

[10] Dienes J.K., “A discussion of material rotation and stress rate”, Acta Mech., 65 (1986), 1–11 | DOI

[11] Brovko G.L., Opredelyayuschie sootnosheniya mekhaniki sploshnoi sredy. Razvitie matematicheskogo apparata i osnov obschei teorii, Nauka, M., 2017, 431 pp.

[12] Brovko G.L., “Nekotorye podkhody k postroeniyu opredelyayuschikh sootnoshenii plastichnosti pri bolshikh deformatsiyakh”, Uprugost i neuprugost, Moskovskii universitet, M., 1987, 68–81

[13] Brovko G.L., “Ob'ektivnye tenzory i ikh otobrazheniya v klassicheskoi mekhanike sploshnoi sredy”, Izvestiya AN. Mekhanika tverdogo tela, 56:1 (2021), 65–83

[14] Finoshkina A.S., “Ispolzovanie novykh ob'ektivnykh proizvodnykh v prosteishikh modelyakh gipouprugosti i plasticheskogo techeniya s kinematicheskim uprochneniem”, Izvestiya Tulskogo gosudarstvennogo universiteta. Ser. Matematika, mekhanika, informatika, 2000, 160–166

[15] Finoshkina A.S., “K postroeniyu modelei plastichnosti pri konechnykh deformatsiyakh na osnove opredelyayuschikh sootnoshenii, izvestnykh pri malykh deformatsiyakh”, Uprugost i neuprugost, materialy Mezhdunarodnogo nauchnogo simpoziuma po problemam mekhaniki deformiruemykh tel, posvyaschennogo 95-letiyu so dnya rozhdeniya A.A. Ilyushina, Lenand, M., 2006, 256–264

[16] Konovalov D., Vershinin A., Zingerman K., Levin V., “The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes”, Modelling and Simulation in Engineering, 2017 (2017), 1797561 | DOI | MR

[17] Karpenko V.S., Vershinin A.V., Levin V.A., Zingerman K.M., “Some results of mesh convergence estimation for the spectral element method of different orders in FIDESYS industrial package”, IOP Conference Series: Materials Science and Engineering, 158:1 (2016), 012049 | DOI | MR