Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a22, author = {V. A. Levin and A. V. Vershinin and K. M. Zingerman and D. R. Biryukov}, title = {Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {262--271}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/} }
TY - JOUR AU - V. A. Levin AU - A. V. Vershinin AU - K. M. Zingerman AU - D. R. Biryukov TI - Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material JO - Čebyševskij sbornik PY - 2022 SP - 262 EP - 271 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/ LA - ru ID - CHEB_2022_23_4_a22 ER -
%0 Journal Article %A V. A. Levin %A A. V. Vershinin %A K. M. Zingerman %A D. R. Biryukov %T Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material %J Čebyševskij sbornik %D 2022 %P 262-271 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/ %G ru %F CHEB_2022_23_4_a22
V. A. Levin; A. V. Vershinin; K. M. Zingerman; D. R. Biryukov. Exact solution to the problem of stage-by-stage deformation of a multilayer cylinder made of incompressible hypoelastic material. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 262-271. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a22/
[1] Martynova E.D., “Protsessy krucheniya tsilindricheskikh obraztsov iz neszhimaemykh vyazkouprugikh materialov Maksvellovskogo tipa”, Prikladnaya matematika i mekhanika, 83:1 (2019), 95–106 | DOI | Zbl
[2] Ovchinnikova N.V., “Zadacha o kruchenii gipouprugogo neszhimaemogo tsilindra”, Mezhvuzovskii sbornik nauchnykh trudov, Matematicheskoe modelirovanie i eksperimentalnaya mekhanika deformiruemogo tverdogo tela, 3, Tverskoi gosudarstvennyi tekhnicheskii universitet, Tver, 2020, 65–72
[3] Levin V.A., Zubov L.M., Zingerman K.M., “Torsion of a Composite Nonlinear Elastic Cylinder with Inclusion at Large Initial Deformations”, International Journal of Solids and Structures, 51:6 (2014), 1403–1409 | DOI | MR
[4] Levin V.A., Zubov L.M., Zingerman K.M., “Torsion of a Composite Nonlinear Elastic Cylinder with a Prestressed Inclusion”, Doklady Physics, 58:12 (2013), 540–543 | DOI | MR
[5] Levin V.A., Zubov L.M., Zingerman K.M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains”, International Journal of Solids and Structures, 67–68 (2015), 244–249 https://www.sciencedirect.com/science/article/pii/S0020768315001973?via | DOI
[6] Levin V.A., Zingerman K.M., “A class of methods and algorithms for the analysis of successive origination of holes in a pre-stressed viscoelastic body. Finite strains”, Communications in Numerical Methods in Engineering, 24:12 (2008), 2240–2251 | DOI | MR | Zbl
[7] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp.
[8] Truesdell K., A first course in rational continuum mechanics, Johns Hopkins University, Baltimore, Maryland, 1972, 592 pp. | MR
[9] Dienes J.K., “On the analysis of rotation speed and stress in deformable bodies”, Acta Mech., 32 (1979), 217–232 | DOI | MR | Zbl
[10] Dienes J.K., “A discussion of material rotation and stress rate”, Acta Mech., 65 (1986), 1–11 | DOI
[11] Brovko G.L., Opredelyayuschie sootnosheniya mekhaniki sploshnoi sredy. Razvitie matematicheskogo apparata i osnov obschei teorii, Nauka, M., 2017, 431 pp.
[12] Brovko G.L., “Nekotorye podkhody k postroeniyu opredelyayuschikh sootnoshenii plastichnosti pri bolshikh deformatsiyakh”, Uprugost i neuprugost, Moskovskii universitet, M., 1987, 68–81
[13] Brovko G.L., “Ob'ektivnye tenzory i ikh otobrazheniya v klassicheskoi mekhanike sploshnoi sredy”, Izvestiya AN. Mekhanika tverdogo tela, 56:1 (2021), 65–83
[14] Finoshkina A.S., “Ispolzovanie novykh ob'ektivnykh proizvodnykh v prosteishikh modelyakh gipouprugosti i plasticheskogo techeniya s kinematicheskim uprochneniem”, Izvestiya Tulskogo gosudarstvennogo universiteta. Ser. Matematika, mekhanika, informatika, 2000, 160–166
[15] Finoshkina A.S., “K postroeniyu modelei plastichnosti pri konechnykh deformatsiyakh na osnove opredelyayuschikh sootnoshenii, izvestnykh pri malykh deformatsiyakh”, Uprugost i neuprugost, materialy Mezhdunarodnogo nauchnogo simpoziuma po problemam mekhaniki deformiruemykh tel, posvyaschennogo 95-letiyu so dnya rozhdeniya A.A. Ilyushina, Lenand, M., 2006, 256–264
[16] Konovalov D., Vershinin A., Zingerman K., Levin V., “The implementation of spectral element method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes”, Modelling and Simulation in Engineering, 2017 (2017), 1797561 | DOI | MR
[17] Karpenko V.S., Vershinin A.V., Levin V.A., Zingerman K.M., “Some results of mesh convergence estimation for the spectral element method of different orders in FIDESYS industrial package”, IOP Conference Series: Materials Science and Engineering, 158:1 (2016), 012049 | DOI | MR