Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a2, author = {M. M. Gallamov}, title = {Integer approximation of a segment}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {20--38}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a2/} }
M. M. Gallamov. Integer approximation of a segment. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 20-38. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a2/
[1] Khinchin A. Ya., Tsepnye drobi, 4-oe izd., Nauka, M., 1978, 112 pp. | MR
[2] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966, 376 pp.
[3] Nesterenko Yu..V., Teoriya chisel, Izdatelskii tsentr “Akademiya”, M., 2008, 272 pp.
[4] Nesterenko Yu. V., Nikishin E. N., “Ocherk o tsepnykh drobyakh”, Kvant, 1983, no. 5, 16–20 ; No 6, 26–30
[5] Mikhalovich Sh. X, Teoriya chisel, Vysshaya shkola, M., 1967, 336 pp.
[6] Aleksandrov P. S, Markushevich A. I., Khinchin A. Ya. (red.), Entsiklopediya elementarnoi matematiki, v. 1, Arifmetika, TTL, M.–L., 1951, 448 pp.
[7] Vasilev H. B., “Vokrug formuly Pika”, Kvant, 1974, no. 12, 39–43
[8] Vavilov V. V., Ustinov A. V., Mnogougolniki na reshetkakh, MTsNMO, M., 2006, 72 pp.
[9] Grunbaum B., G. C. Shephard, “Pick's Theorem”, The American Mathematical Monthly, 100:2 (2001), 150–61 | DOI | MR
[10] Arnold V. I., Tsepnye drobi, MTsNMO, M., 2001, 40 pp.
[11] Devenport G., Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965, 176 pp.
[12] Klein F., Elementarnaya matematika s tochki zreniya vysshei, v. I, Arifmetika. Algebra. Analiz, 4-oe izdanie, Nauka, M., 1987, 432 pp. | MR
[13] Khovanova T., Konyagin S., Sequences of Integers with Missing Quotients and Dense Points Without Neighbors, 2011, 20 pp., arXiv: 1104.0441v1 [math.CO] | MR | Zbl
[14] Gallamov M. M., “Pryamye $y=-e\cdot x+t$ i shakhmatnaya raskraska”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVI Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya professora Mishelya Deza (Tula, 13–18 maya 2019 g.), 247–250
[15] Gallamov M. M., “Pryamye $y=\frac{1-\sqrt{5}}{2}\cdot x+s$ i shakhmatnaya raskraska”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVII Mezhdunarodnoi konferentsii, posvyaschennoi stoletiyu so dnya rozhdeniya professora Nauma Ilicha Feldmana i devyanostoletiyu so dnya rozhdeniya professorov Askolda Ivanovicha Vinogradova, Aleksandra Vasilevicha Malysheva i Borisa Faddeevicha Skubenko (Tula, 23–29 sentyabr 2019 g.), 142–245
[16] Gallamov M. M., “Pryamye $y=-[a^{\pm}_{0};a^{\pm}_{1},a^{\pm}_{2},...]\cdot x+t$ s chetnymi $a^{+}_{n}$ i nechetnymi $a^{-}_{n}=a(\neq1)$ i shakhmatnaya raskraska”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII Mezhdunarodnoi konferentsii, posvyaschennaya stoletiyu so dnya rozhdeniya professorov Borisa Maksimovicha Bredikhina, Vasiliya Ilicha Nechaeva i Sergeya Borisovicha Stechkina (Tula, 23–26 sentyabrya 2020 g.), 261–265
[17] Gallamov M. M., “Tselochislennaya approksimatsiya otrezka”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XXI Mezhdunarodnoi konferentsii, posvyaschennaya 85-letiyu so dnya rozhdeniya A. A. Karatsuby (Tula, 17–21 maya 2022 g.), 235–238