Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 211-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper comes to compare four different approximations of the solution to a layered linear elastic plate bending problem, obtained by the structural functions method. This method is in representation of a nonhomogeneous body displacement field as a weighted sum of spatial derivatives of the so-called concomitant body displacements, the weighting coefficients are named structural functions of the nonhomogeneous body; the concomitant body is a homogeneous one, subjected to the same loadings and boundary conditions, as the nonhomogeneous body; we come through the basic steps of structural functions method in this paper. For the concomitant plate displacements, we consider two well-known approximations: the classical plate theory and the first-order shear deformation theory. We obtain the first- and the second-order structural functions of a layered plate. We derive direct formulae for the first- and second-order structural functions method approximations of the nonhomogeneous plate displacements, using both concomitant plate displacements approximations. For a set of sample plates, we compute the obtained structural functions method approximations, and compare the computation results with a known Pagano solution to the nonhomogeneous plate bending problem. The approximation, based on the first-order shear deformation theory approach to the concomitant body displacements computation, gives an acceptable result in the considered cases.
Keywords: composite mechanics, layered plates, structural functions method.
@article{CHEB_2022_23_4_a19,
     author = {L. A. Kabanova},
     title = {Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {211--232},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/}
}
TY  - JOUR
AU  - L. A. Kabanova
TI  - Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 211
EP  - 232
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/
LA  - ru
ID  - CHEB_2022_23_4_a19
ER  - 
%0 Journal Article
%A L. A. Kabanova
%T Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem
%J Čebyševskij sbornik
%D 2022
%P 211-232
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/
%G ru
%F CHEB_2022_23_4_a19
L. A. Kabanova. Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 211-232. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/

[1] Gorbachev V. I., “Metod tenzorov Grina dlya resheniya kraevykh zadach teorii uprugosti neodnorodnykh tel”, Vychislitelnaya mekhanika, 1991, no. 2, 61–76

[2] Gorbachev V.I., Variant metoda osredneniya dlya resheniya kraevykh zadach neodnorodnoi uprugosti, Dissertatsiya doktora fiziko-matematicheskikh nauk, MGU im. M. B. Lomonosova, Mekhaniko-matematicheskii fakultet, 1991, 395 pp.

[3] Gorbachev V.I., Kokarev A.S., “Integralnaya formula v dinamicheskoi zadache neodnorodnoi uprugosti”, Vestnik MGU, no. 2, 62–66 | MR

[4] Gorbachev V. I., “Integral formulae in the coupled problem of the elasticity of an inhomogeneous body. Application in the mechanics of composite materials”, Journal of Applied Mathematics and Mechanics (English translation of Prikladnaya Matematika i Mekhanika), 78:2 (2014), 192–208 | MR | Zbl

[5] Emelyanov A. N., “Effektivnye materialnye funktsii sloistykh kompozitov v lineinoi momentnoi teorii uprugosti”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2015, no. 1, 40–45 | Zbl

[6] Gorbachev V. I., “Integralnye formuly reshenii osnovnykh lineinykh differentsialnykh uravnenii matematicheskoi fiziki s peremennymi koeffitsientami”, Chebyshevskii sbornik, 18:3 (2017), 209–233 | MR

[7] Gorbachev V. I., Moskalenko O. B., “Stability of a straight bar of variable rigidity”, Mechanics of Solids, 46:4 (2011), 645–655 | DOI

[8] Gorbachev V. I., Olekhova L. V., “Effective properties of a nonuniform beam under torsion”, Moscow University Mechanics Bulletin, 62:5 (2007), 123–130 | DOI | MR

[9] Gorbachev V. I., “O rasprostranenii tepla v neodnorodnom sterzhne s peremennym poperechnym secheniem”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2017, no. 2, 48–54 | Zbl

[10] Gorbachev V. I., “Differential equations with variable coefficients in the mechanics of inhomogeneous bodies”, Mechanics of Solids, 55:3 (2020), 396–402 | DOI | MR

[11] Gorbachev V. I., Gulin V. V., “Tochnye resheniya nekotorykh zadach teorii uprugosti o ravnovesii neodnorodnoi po shirine, anizotropnoi polosy”, Kompozity i nanostruktury, 13:3-4 (2021), 120–126

[12] Solyaev Yu. O., Gorbachev V. I., “Copostavlenie metodov Mori-Tanaka i Gorbacheva-Pobedri v zadache opredeleniya effektivnykh svoistv kompozitov s pezoaktivnymi sfericheskimi vklyucheniyami”, Mekhanika kompozitsionnykh materialov i konstruktsii, 25:1 (2019), 57–75 | DOI | MR

[13] Kirchoff G., Vorlesungen Über Mathematische Physik: Mechanik, 1877

[14] Reddy J. N., Theory and analysis of elastic plates and shells, CRC press, 2006

[15] Kienzler R., Shneider P., “Comparison of various linear plate theories in the light of a consistent second order approximation”, Shell Structures: Theory and Applications, 3 (2013), 109–112 | DOI | MR

[16] Hencky H., “Uber due Beriicksichtigung der Schubverzerrung in ebenen Platten”, Ingenieur-Archiv, 16 (1947) | DOI | MR | Zbl

[17] Levinson M., “An accurate, simple theory of the statics and amics of elastic plates”, Mechanics Research Communications, 7:6 (1980), 343–350 | DOI | MR | Zbl

[18] Stephen N. G., “Mindlin plate theory: best shear coefficient and higher spectra validity”, Journal of Sound and Vibration, 202:4 (1997), 539–553 | DOI

[19] Vassiliev V.V., Lurie S.A., “On refined theories of beams, plates shells”, J. of Composite Materials, 26:4 (1992) | MR | Zbl

[20] Vasilev V.V., Lure S.A., “K probleme postroeniya neklassicheskikh teorii plastin”, Izvestiya AN SSSR, MTT, 1990, no. 2, 158–167

[21] Mechab B., Mechab I., Benaissa S., “Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading”, Composites Part B: Engineering, 43:3 (2012), 1453–1458 | DOI

[22] Tovstik P. E., “Two-dimensional model of second-order accuracy for an anisotropic plate”, Vestnik St. Petersburg University, Mathematics, 52:1 (2019), 112–121 | DOI | MR | Zbl

[23] Zenkour A. M., El-Mekawy H. F., “Bending of inhomogeneous sandwich plates with viscoelastic cores”, Journal of Vibroengineering, 16:7 (2014), 3260–3272

[24] Hadavinia H. et al., “Deriving shear correction factor for thick laminated plates using the energy equivalence method”, Structural Durability Health Monitoring, 2:4 (2006), 197

[25] Altenbach H., Eremeyev V. A., “On the bending of viscoelastic plates made of polymer foams”, Acta Mechanica, 204:3, 137–154 | MR | Zbl

[26] Lekhnitskii S. G., Anisotropic plates, Foreign Technology Div Wright-Patterson Afb Oh, 1968

[27] Ambartsumian S. A., Theory of anisotropic plates: strength, stability, vibration, Technomic Publishing Company, 1970 | MR

[28] Vlasov B. F., “On the equations of bending of plates”, Doklady Akademii Nauk Azerbeijanskoi SSR, 13:9 (1957), 955–959 (in Russian) | Zbl

[29] Murakami H., Laminated composite plate theory with improved in-plane responses, 1986

[30] Grigolyuk E. I., Kulikov G. M., “Puti razvitiya teorii uprugikh mnogosloinykh plastin i obolochek”, Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 11:2 (2005), 439–448

[31] Si J., Zhang Y., “An enhanced higher order zigzag theory for laminated composite plates under mechanical/thermal loading”, Composite Structures, 282 (2022), 115074 | DOI

[32] Lezgy-Nazargah M., Salahshuran S., “A new mixed-field theory for bending and vibration analysis of multi-layered composite plate”, Archives of Civil and Mechanical Engineering, 18:3 (2018), 818–832 | DOI | MR

[33] Pagano N. J., “Exact solutions for rectangular bidirectional composites and sandwich plates”, Journal of composite materials, 4:1 (1970), 20–34 | DOI

[34] Carrera E., “An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates”, Composite structures, 50:2 (2000), 183–198 | DOI

[35] Carrera E., “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking”, Archives of Computational Methods in Engineering, 10:3 (2003), 215–296 | DOI | MR | Zbl

[36] Filippi M., Carrera E., Valvano S., “Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements”, Composites Part B: Engineering, 154 (2018), 77–89 | DOI | MR

[37] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, Izd. Mosk. un-ta, M., 1984

[38] Gorbachev V. I., Kabanova L. A., “O postanovke zadach v obschei teorii plastin Kirkhgofa-Lyava”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2018, no. 3, 43–50 | Zbl

[39] Kabanova L. A., “The first-order structural functions method solution to the simply supported layered plate bending problem”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1628–1639 | DOI | MR