Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a19, author = {L. A. Kabanova}, title = {Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {211--232}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/} }
TY - JOUR AU - L. A. Kabanova TI - Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem JO - Čebyševskij sbornik PY - 2022 SP - 211 EP - 232 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/ LA - ru ID - CHEB_2022_23_4_a19 ER -
%0 Journal Article %A L. A. Kabanova %T Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem %J Čebyševskij sbornik %D 2022 %P 211-232 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/ %G ru %F CHEB_2022_23_4_a19
L. A. Kabanova. Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 211-232. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a19/
[1] Gorbachev V. I., “Metod tenzorov Grina dlya resheniya kraevykh zadach teorii uprugosti neodnorodnykh tel”, Vychislitelnaya mekhanika, 1991, no. 2, 61–76
[2] Gorbachev V.I., Variant metoda osredneniya dlya resheniya kraevykh zadach neodnorodnoi uprugosti, Dissertatsiya doktora fiziko-matematicheskikh nauk, MGU im. M. B. Lomonosova, Mekhaniko-matematicheskii fakultet, 1991, 395 pp.
[3] Gorbachev V.I., Kokarev A.S., “Integralnaya formula v dinamicheskoi zadache neodnorodnoi uprugosti”, Vestnik MGU, no. 2, 62–66 | MR
[4] Gorbachev V. I., “Integral formulae in the coupled problem of the elasticity of an inhomogeneous body. Application in the mechanics of composite materials”, Journal of Applied Mathematics and Mechanics (English translation of Prikladnaya Matematika i Mekhanika), 78:2 (2014), 192–208 | MR | Zbl
[5] Emelyanov A. N., “Effektivnye materialnye funktsii sloistykh kompozitov v lineinoi momentnoi teorii uprugosti”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2015, no. 1, 40–45 | Zbl
[6] Gorbachev V. I., “Integralnye formuly reshenii osnovnykh lineinykh differentsialnykh uravnenii matematicheskoi fiziki s peremennymi koeffitsientami”, Chebyshevskii sbornik, 18:3 (2017), 209–233 | MR
[7] Gorbachev V. I., Moskalenko O. B., “Stability of a straight bar of variable rigidity”, Mechanics of Solids, 46:4 (2011), 645–655 | DOI
[8] Gorbachev V. I., Olekhova L. V., “Effective properties of a nonuniform beam under torsion”, Moscow University Mechanics Bulletin, 62:5 (2007), 123–130 | DOI | MR
[9] Gorbachev V. I., “O rasprostranenii tepla v neodnorodnom sterzhne s peremennym poperechnym secheniem”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2017, no. 2, 48–54 | Zbl
[10] Gorbachev V. I., “Differential equations with variable coefficients in the mechanics of inhomogeneous bodies”, Mechanics of Solids, 55:3 (2020), 396–402 | DOI | MR
[11] Gorbachev V. I., Gulin V. V., “Tochnye resheniya nekotorykh zadach teorii uprugosti o ravnovesii neodnorodnoi po shirine, anizotropnoi polosy”, Kompozity i nanostruktury, 13:3-4 (2021), 120–126
[12] Solyaev Yu. O., Gorbachev V. I., “Copostavlenie metodov Mori-Tanaka i Gorbacheva-Pobedri v zadache opredeleniya effektivnykh svoistv kompozitov s pezoaktivnymi sfericheskimi vklyucheniyami”, Mekhanika kompozitsionnykh materialov i konstruktsii, 25:1 (2019), 57–75 | DOI | MR
[13] Kirchoff G., Vorlesungen Über Mathematische Physik: Mechanik, 1877
[14] Reddy J. N., Theory and analysis of elastic plates and shells, CRC press, 2006
[15] Kienzler R., Shneider P., “Comparison of various linear plate theories in the light of a consistent second order approximation”, Shell Structures: Theory and Applications, 3 (2013), 109–112 | DOI | MR
[16] Hencky H., “Uber due Beriicksichtigung der Schubverzerrung in ebenen Platten”, Ingenieur-Archiv, 16 (1947) | DOI | MR | Zbl
[17] Levinson M., “An accurate, simple theory of the statics and amics of elastic plates”, Mechanics Research Communications, 7:6 (1980), 343–350 | DOI | MR | Zbl
[18] Stephen N. G., “Mindlin plate theory: best shear coefficient and higher spectra validity”, Journal of Sound and Vibration, 202:4 (1997), 539–553 | DOI
[19] Vassiliev V.V., Lurie S.A., “On refined theories of beams, plates shells”, J. of Composite Materials, 26:4 (1992) | MR | Zbl
[20] Vasilev V.V., Lure S.A., “K probleme postroeniya neklassicheskikh teorii plastin”, Izvestiya AN SSSR, MTT, 1990, no. 2, 158–167
[21] Mechab B., Mechab I., Benaissa S., “Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading”, Composites Part B: Engineering, 43:3 (2012), 1453–1458 | DOI
[22] Tovstik P. E., “Two-dimensional model of second-order accuracy for an anisotropic plate”, Vestnik St. Petersburg University, Mathematics, 52:1 (2019), 112–121 | DOI | MR | Zbl
[23] Zenkour A. M., El-Mekawy H. F., “Bending of inhomogeneous sandwich plates with viscoelastic cores”, Journal of Vibroengineering, 16:7 (2014), 3260–3272
[24] Hadavinia H. et al., “Deriving shear correction factor for thick laminated plates using the energy equivalence method”, Structural Durability Health Monitoring, 2:4 (2006), 197
[25] Altenbach H., Eremeyev V. A., “On the bending of viscoelastic plates made of polymer foams”, Acta Mechanica, 204:3, 137–154 | MR | Zbl
[26] Lekhnitskii S. G., Anisotropic plates, Foreign Technology Div Wright-Patterson Afb Oh, 1968
[27] Ambartsumian S. A., Theory of anisotropic plates: strength, stability, vibration, Technomic Publishing Company, 1970 | MR
[28] Vlasov B. F., “On the equations of bending of plates”, Doklady Akademii Nauk Azerbeijanskoi SSR, 13:9 (1957), 955–959 (in Russian) | Zbl
[29] Murakami H., Laminated composite plate theory with improved in-plane responses, 1986
[30] Grigolyuk E. I., Kulikov G. M., “Puti razvitiya teorii uprugikh mnogosloinykh plastin i obolochek”, Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 11:2 (2005), 439–448
[31] Si J., Zhang Y., “An enhanced higher order zigzag theory for laminated composite plates under mechanical/thermal loading”, Composite Structures, 282 (2022), 115074 | DOI
[32] Lezgy-Nazargah M., Salahshuran S., “A new mixed-field theory for bending and vibration analysis of multi-layered composite plate”, Archives of Civil and Mechanical Engineering, 18:3 (2018), 818–832 | DOI | MR
[33] Pagano N. J., “Exact solutions for rectangular bidirectional composites and sandwich plates”, Journal of composite materials, 4:1 (1970), 20–34 | DOI
[34] Carrera E., “An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates”, Composite structures, 50:2 (2000), 183–198 | DOI
[35] Carrera E., “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking”, Archives of Computational Methods in Engineering, 10:3 (2003), 215–296 | DOI | MR | Zbl
[36] Filippi M., Carrera E., Valvano S., “Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements”, Composites Part B: Engineering, 154 (2018), 77–89 | DOI | MR
[37] Pobedrya B. E., Mekhanika kompozitsionnykh materialov, Izd. Mosk. un-ta, M., 1984
[38] Gorbachev V. I., Kabanova L. A., “O postanovke zadach v obschei teorii plastin Kirkhgofa-Lyava”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2018, no. 3, 43–50 | Zbl
[39] Kabanova L. A., “The first-order structural functions method solution to the simply supported layered plate bending problem”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1628–1639 | DOI | MR