Weighted Carleman inequality for fractional gradient
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 152-156
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the weighted Carleman inequality for the fractional gradient
$$
\|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{-\gamma}f\|_{q}\le C\|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{\bar{\gamma}-\bar{\delta}}\nabla^{\alpha}f\|_{p}, f\in C_{0}^{\infty}(\mathbb{R}^{d}), t\ge 0.
$$
For $\alpha=1$, it was proved by L. De Carli, D. Gorbachev, and S. Tikhonov (2020). An application of the Carleman inequality is given to prove the weak unique continuation property of a solution of the differential inequality with the potential $|\nabla^{\alpha}f|\le V|f|$ in a weighted Sobolev space.
Keywords:
Carleman's inequality, fractional gradient, Fourier transform, Pitt's inequality, differential inequality.
@article{CHEB_2022_23_4_a12,
author = {D. V. Gorbachev},
title = {Weighted {Carleman} inequality for fractional gradient},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {152--156},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/}
}
D. V. Gorbachev. Weighted Carleman inequality for fractional gradient. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 152-156. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/