Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a12, author = {D. V. Gorbachev}, title = {Weighted {Carleman} inequality for fractional gradient}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {152--156}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/} }
D. V. Gorbachev. Weighted Carleman inequality for fractional gradient. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 152-156. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/
[1] Benedetto J.J., Heinig H.P., “Weighted Fourier inequalities: New proofs and generalizations”, J. Fourier Anal. Appl., 9 (2003), 1–37 | DOI | MR | Zbl
[2] De Carli L., Gorbachev D., Tikhonov S., “Weighted gradient inequalities and unique continuation problems”, Calc. Var. Partial Dif., 59:3 (2020), 89 | DOI | MR | Zbl
[3] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Sharp approximation theorems and Fourier inequalities in the Dunkl setting”, J. Approx. Theory, 258 (2020), 105462 | DOI | MR | Zbl
[4] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Riesz potential and maximal function for Dunkl transform”, Potential Anal., 55 (2021), 513–538 | DOI | MR | Zbl
[5] Heinig H.P., “Weighted Sobolev inequalities for gradients”, Harmonic analysis and applications, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2006, 17–23 | DOI | MR | Zbl