Weighted Carleman inequality for fractional gradient
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 152-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the weighted Carleman inequality for the fractional gradient $$ \|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{-\gamma}f\|_{q}\le C\|e^{-t\langle a,{ \cdot }\rangle}|{ \cdot }|^{\bar{\gamma}-\bar{\delta}}\nabla^{\alpha}f\|_{p}, f\in C_{0}^{\infty}(\mathbb{R}^{d}), t\ge 0. $$ For $\alpha=1$, it was proved by L. De Carli, D. Gorbachev, and S. Tikhonov (2020). An application of the Carleman inequality is given to prove the weak unique continuation property of a solution of the differential inequality with the potential $|\nabla^{\alpha}f|\le V|f|$ in a weighted Sobolev space.
Keywords: Carleman's inequality, fractional gradient, Fourier transform, Pitt's inequality, differential inequality.
@article{CHEB_2022_23_4_a12,
     author = {D. V. Gorbachev},
     title = {Weighted {Carleman} inequality for fractional gradient},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {152--156},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Weighted Carleman inequality for fractional gradient
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 152
EP  - 156
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/
LA  - ru
ID  - CHEB_2022_23_4_a12
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Weighted Carleman inequality for fractional gradient
%J Čebyševskij sbornik
%D 2022
%P 152-156
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/
%G ru
%F CHEB_2022_23_4_a12
D. V. Gorbachev. Weighted Carleman inequality for fractional gradient. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 152-156. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a12/

[1] Benedetto J.J., Heinig H.P., “Weighted Fourier inequalities: New proofs and generalizations”, J. Fourier Anal. Appl., 9 (2003), 1–37 | DOI | MR | Zbl

[2] De Carli L., Gorbachev D., Tikhonov S., “Weighted gradient inequalities and unique continuation problems”, Calc. Var. Partial Dif., 59:3 (2020), 89 | DOI | MR | Zbl

[3] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Sharp approximation theorems and Fourier inequalities in the Dunkl setting”, J. Approx. Theory, 258 (2020), 105462 | DOI | MR | Zbl

[4] Gorbachev D.V., Ivanov V.I., Tikhonov S.Yu., “Riesz potential and maximal function for Dunkl transform”, Potential Anal., 55 (2021), 513–538 | DOI | MR | Zbl

[5] Heinig H.P., “Weighted Sobolev inequalities for gradients”, Harmonic analysis and applications, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2006, 17–23 | DOI | MR | Zbl