Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a11, author = {O. S. Shcherbakov}, title = {Polytops of binary trees, structure of the polytop for the <<snake--type>>--tree}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {136--151}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a11/} }
O. S. Shcherbakov. Polytops of binary trees, structure of the polytop for the <>--tree. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 136-151. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a11/
[1] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.-Izhevsk, 2003
[2] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[3] Ivanov A., Tuzhilin A., “Dual Linear Programming Problem and One-Dimensional Gromov Minimal Fillings of Finite Metric Space”, Differential Equations on Manifolds and Mathematical Physics, Trends in Mathematics, Birkhäuser, Cham, 2022, 165–182 | MR
[4] Eremin A.Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl
[5] Vasilev F.P., Ivanitskii A.Yu., Lineinoe programmirovanie, MTsNMO, M., 2020
[6] Ivanov A.O., Tuzhilin A.A. Eremin A.Yu. i dr., “Minimalnye zapolneniya psevdometricheskikh prostranstv”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, 27, 2011, 83–105
[7] Ivanov A. O.,Ovsyannikov Z. N., Strelkova N. P., Tuzhilin A. A., “Odnomernye minimalnye zapolneniya s rebrami otritsatelnogo vesa”, Vestn. Mosk. univ., Matem. Mekh., 2012, no. 5, 3–8
[8] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya mnogoobrazii”, Matem. zametki, 74:3 (2003), 387–395 | DOI | MR | Zbl
[9] Ovsyannikov Z.N., “Otkrytoe semeistvo mnozhestv, dlya kotorykh minimalnoe zapolnenie ne edinstvenno”, Fund. i prikl. matem., 18:2 (2013), 153–156
[10] Bednov B. B., “Dlina minimalnogo zapolneniya pyatitochechnogo metricheskogo prostranstva”, Vestn. Mosk. univ., Matem. Mekh., 2017, no. 6, 3–8 | MR | Zbl
[11] Bednov B. B., “O mnozhestve tochek Shteinera chetyrekh elementov v prostranstve Lindenshtraussa”, Vestn. Mosk. univ., Matem. mekh., 2019, no. 6, 3–8 | MR | Zbl
[12] Bednov B. B., “Dlina minimalnogo zapolneniya tipa zvezdy”, Matem. sb., 207:8 (2016), 31–46 | DOI | MR | Zbl
[13] Bednov B. B., Borodin P. A., “Banakhovy prostranstva, realizuyuschie minimalnye zapolneniya”, Matem. sb., 205:4 (2014), 3–20 | DOI | MR | Zbl
[14] Pakhomova A. S., “Kriterii nepreryvnosti otnoshenii tipa Shteinera v prostranstve Gromova-Khausdorfa”, Matem. zametki, 96:1 (2014), 126–137 | DOI | MR | Zbl
[15] Rubleva O.V., “Kriterii additivnosti konechnogo metricheskogo prostranstva i minimalnye zapolneniya”, Vestn. Mosk. univ., Matem. Mekh., 2012, no. 2, 8–11 | MR | Zbl