Carleman's formula for the matrix domains of Siegel
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 126-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The domain of Siegel first type is not a bounded domain, but Carleman's formulas for it play an important role in the further presentation. In this paper, the Carleman formula for the Siegel domain is found.
Keywords: Сlassical domains, Carleman's formula, Shilov boundary, Cauchy kernel, matrix unit disc, Siegel domain.
@article{CHEB_2022_23_4_a10,
     author = {U. S. Rakhmonov and Z. K. Matyakubov},
     title = {Carleman's formula for the matrix domains of {Siegel}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {126--135},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/}
}
TY  - JOUR
AU  - U. S. Rakhmonov
AU  - Z. K. Matyakubov
TI  - Carleman's formula for the matrix domains of Siegel
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 126
EP  - 135
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/
LA  - en
ID  - CHEB_2022_23_4_a10
ER  - 
%0 Journal Article
%A U. S. Rakhmonov
%A Z. K. Matyakubov
%T Carleman's formula for the matrix domains of Siegel
%J Čebyševskij sbornik
%D 2022
%P 126-135
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/
%G en
%F CHEB_2022_23_4_a10
U. S. Rakhmonov; Z. K. Matyakubov. Carleman's formula for the matrix domains of Siegel. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 126-135. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/

[1] T.Carleman, Les fonctions quasi analytiques, Gauthier–Villars, Paris, 1926, 3–6

[2] G. M. Golusin, W. J. Krylow, “Verallgemeinerung einer Formel von Carleman und ihre Anwendung zur analytischen Fortsetzung”, Mat. Sb., 40:2 (1933), 144–149 | Zbl

[3] Khua L. K., Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959, 163 pp. | MR

[4] A. M. Kytmanov, T. N. Nikitina, “Analogi formuly Karlemana dlya klassicheskikh oblastei”, Matem. zametki, 45:3 (1989), 87–93 | MR

[5] A. M. Kytmanov, T. N. Nikitina, “Mnogomernye formuly Karlemana v oblastyakh Zigelya”, Izv. vuzov. Matem., 1990, no. 3, 44–49

[6] S. Kosbergenov, “O formule Karlemana dlya matrichnogo shara”, Izv. vuzov. Matem., 1999, no. 1, 76–79 | MR | Zbl

[7] G. Khudayberganov, U.S. Rakhmonov, Z.Q. Matyakubov, “Integral formulas for some matrix domains”, Contemporary Mathematics, 662, AMS, 2016, 89–95 | DOI | MR | Zbl

[8] G.Khudayberganov, U.S.Rakhmonov, “The Bergman and Cauchy-Szego kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 305–310 | MR

[9] G.Khudayberganov, B.P.Otemuratov, U.S.Rakhmonov, “Boundary Morera theorem for the matrix ball of the third type”, Journal of Siberian Federal University. Mathematics and Physics, 11:1 (2018), 40–45 | DOI | MR

[10] G.Khudayberganov, U.S.Rakhmonov, “Carleman Formula for Matrix Ball of the Third Type”, Algebra, Complex Analysis, and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics and Statistics, 264, Springer, Cham, 2017, 101–108 | MR

[11] U. S. Rakhmonov, J. Sh. Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 548–557 | MR | Zbl

[12] G. Khudayberganov, J. Abdullayev, “Relationship between the Kernels Bergman and Cauchy-Szegő in the domains $\tau ^{+} \left(n-1\right)$ and $\Re_{IV}^{n} $”, Journal of Siberian Federal University. Mathematics Physics, 13:5 (2020), 559–567 | DOI | MR

[13] G.Khudayberganov, A.M.Khalknazarov, J.Sh.Abdullayev, “Laplace and Hua Luogeng operators”, Russian Math. (Iz. VUZ), 64:3 (2020), 66–71 | DOI | MR | Zbl

[14] L. A. Aizenberg, Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990, 248 pp. | MR

[15] P. Kusis, Vvedenie v teoriyu prostranstv $H^p $, Mir, M., 1984, 368 pp.

[16] Khudaiberganov, A. M. Kytmanov, B. A. Shaimkulov, Analiz v matrichnykh oblastyakh, Monografiya, Sibirskii federalnyi un-t, Krasnoyarsk, 2017, 292 pp.

[17] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950, 338 pp. | MR

[18] Jonibek Sh. Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${\Re_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Stiinte Repub. Mold. Mat., 2020, no. 3, 88–96 | Zbl

[19] G.Khudayberganov, J.Sh.Abdullayev, “The boundary Morera theorem for domain ${\tau ^{+}}\left( n-1 \right)$”, Ufimsk. Mat. Zh., 13:3 (2021), 196–210 | MR | Zbl

[20] K.Rakhimov, Sh.Shopulatov, “A mean value criterion for plurisubharmonic functions”, Complex Variables and Elliptic Equations, 2021 | DOI | MR

[21] G.Khudayberganov, J.Sh.Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 296–310 | DOI | MR | Zbl

[22] J.Sh.Abdullayev, “Estimates the Bergman kernel for classical domains E. Cartan's”, Chebyshevskii sbornik, 22:3 (2021), 21–32 | DOI | MR

[23] Uktam S. Rakhmonov, Jonibek Sh. Abdullayev, “On properties of the second type matrix ball $B_{m,n} ^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$”, J. Sib. Fed. Univ. Math. Phys., 15:3 (2022), 329–342 | MR