Carleman's formula for the matrix domains of Siegel
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 126-135

Voir la notice de l'article provenant de la source Math-Net.Ru

The domain of Siegel first type is not a bounded domain, but Carleman's formulas for it play an important role in the further presentation. In this paper, the Carleman formula for the Siegel domain is found.
Keywords: Сlassical domains, Carleman's formula, Shilov boundary, Cauchy kernel, matrix unit disc, Siegel domain.
@article{CHEB_2022_23_4_a10,
     author = {U. S. Rakhmonov and Z. K. Matyakubov},
     title = {Carleman's formula for the matrix domains of {Siegel}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {126--135},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/}
}
TY  - JOUR
AU  - U. S. Rakhmonov
AU  - Z. K. Matyakubov
TI  - Carleman's formula for the matrix domains of Siegel
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 126
EP  - 135
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/
LA  - en
ID  - CHEB_2022_23_4_a10
ER  - 
%0 Journal Article
%A U. S. Rakhmonov
%A Z. K. Matyakubov
%T Carleman's formula for the matrix domains of Siegel
%J Čebyševskij sbornik
%D 2022
%P 126-135
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/
%G en
%F CHEB_2022_23_4_a10
U. S. Rakhmonov; Z. K. Matyakubov. Carleman's formula for the matrix domains of Siegel. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 126-135. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a10/