Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_3_a9, author = {V. V. Ponomarev}, title = {Connection between the ring of $\mathrm{Ad}^*$-invariant polynomials and the {Jordan--Kronecker} invariants of nilpotent low-dimensional {Lie} algebras}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {147--155}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a9/} }
TY - JOUR AU - V. V. Ponomarev TI - Connection between the ring of $\mathrm{Ad}^*$-invariant polynomials and the Jordan--Kronecker invariants of nilpotent low-dimensional Lie algebras JO - Čebyševskij sbornik PY - 2022 SP - 147 EP - 155 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a9/ LA - ru ID - CHEB_2022_23_3_a9 ER -
%0 Journal Article %A V. V. Ponomarev %T Connection between the ring of $\mathrm{Ad}^*$-invariant polynomials and the Jordan--Kronecker invariants of nilpotent low-dimensional Lie algebras %J Čebyševskij sbornik %D 2022 %P 147-155 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a9/ %G ru %F CHEB_2022_23_3_a9
V. V. Ponomarev. Connection between the ring of $\mathrm{Ad}^*$-invariant polynomials and the Jordan--Kronecker invariants of nilpotent low-dimensional Lie algebras. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 147-155. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a9/
[1] Bolsinov A. V., Kozlov I. K., Jordan-Kronecker invariants of Lie algebra representations and degrees of invariant polynomials, 2014, arXiv: 1407.1878
[2] Bolsinov A. V., Oshemkov A. A., “Bi-Hamiltonian structures and singularities of integrable systems”, Regul. Chaotic Dyn., 14:4-5 (2009), 431–454 | DOI | MR | Zbl
[3] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izdatelskii dom «Udmurtskii universitet», Izhevsk, 1999
[4] Bolsinov A. V., Zhang P., “Jordan-Kronecker invariants of finite-dimensional Lie algebras”, Transformation Groups, 21:1 (2016), 51–86 | DOI | MR | Zbl
[5] Weierstrass K., “Zur Theorie der bilinearen und quadratischen formen”, Monatsh. Akad. Wiss., Berlin, 1867, 310–338
[6] Gelfand I. M., Zakharevich I., “Webs, Veronese curves, and bi-Hamiltonian systems”, J. Funct. Anal., 99:1 (1991), 150–178 | DOI | MR | Zbl
[7] Gelfand I. M., Zakharevich I., “On the local geometry of a bi-Hamiltonian structure”, The Gel'fand Mathematical Seminars 1990–1992, Birkhäuser Boston, Boston, MA, 1993, 51–112 | DOI | MR | Zbl
[8] Gelfand I. M., Zakharevich I., “Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures”, Selecta Math. New Series, 6:2 (2000), 131–183 | DOI | MR | Zbl
[9] Gong M.-P., Classification of Nilpotent Lie Algebras of Dimension 7 (Over Algibraically Closed Fields and $R$), PhD thesis, University of Waterloo, Ontario, 1998 | MR
[10] Groznova A. Yu., Vychislenie invariantov Zhordana — Kronekera dlya algebr Li malykh razmernostei, Diplomnaya rabota, Moskovskii Gosudarstvennyi Universitet im. M.V. Lomonosova, Mekhaniko-Matematicheskii fakultet, 2018
[11] Kronecker L., “Algebraische reduction der schaaren bilinearer formen”, S.-B. Akad., Berlin, 1890, 763–776
[12] Magnin L., “Sur les algèbres de Lie nilpotentes de dimension 7”, J. Geom. Phys., 3:1 (1986), 119–144 | DOI | MR | Zbl
[13] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR
[14] Ooms A., “The Poisson center and polynomial, maximal Poisson commutative subalgebras, especially for nilpotent Lie algebras of dimension at most seven”, Journal of Algebra, 2012, no. 365, 83–113 | DOI | MR | Zbl
[15] Thompson R. C., “Pencils of complex and real symmetric and skew matrices”, Linear Algebra and its Appl., 147 (1991), 323–371 | DOI | MR | Zbl