Analytical embedding for geometries of constant curvature
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 133-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

In various sections of modern mathematics and theoretical physics find their wide application of geometry of constant curvature. These geometries include spherical geometry, Lobachevsky geometry, de Sitter geometry. $n$-dimensional geometries of constant curvature are defined by metric functions that are invariants of motion groups of dimension $n(n + 1)/2$, therefore they are geometries of local maximum mobility. In this article, by the example of geometries of constant curvature, the embedding problem is solved, the essence of which is to find $ (n + 1) $ -dimensional geometries of local maximum mobility from $n$-dimensional geometries of constant curvature. We search for all functions of a pair of points of the form $f(A, B) = \chi(g(A,B),w_A,w_B) $ that define $(n + 1)$-dimensional geometries with motion groups of dimension $(n + 1)(n + 2)/2 $ by the well-known metric functions of $g(A, B)$ $n$-dimensional geometries of constant curvature. This problem reduces to solving functional equations of a special form in the class of analytic functions. The solution is sought in the form of Taylor series. To simplify the analysis of coefficients, the Maple 17 mathematical program package is used. The results of this embedding of $n$-dimensional geometries of constant curvature are $(n + 1)$-dimensional extensions of Euclidean and pseudo-Euclidean $n$-dimensional spaces. In addition to the main theorem, auxiliary statements of independent significance are proved.
Keywords: metric function, functional equation, geometry of constant curvature, group of motions.
@article{CHEB_2022_23_3_a8,
     author = {V. A. Kyrov},
     title = {Analytical embedding for geometries of constant curvature},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {133--146},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a8/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Analytical embedding for geometries of constant curvature
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 133
EP  - 146
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a8/
LA  - ru
ID  - CHEB_2022_23_3_a8
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Analytical embedding for geometries of constant curvature
%J Čebyševskij sbornik
%D 2022
%P 133-146
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a8/
%G ru
%F CHEB_2022_23_3_a8
V. A. Kyrov. Analytical embedding for geometries of constant curvature. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 133-146. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a8/

[1] Thurston W. P., “Three dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bulletin of the American Mathematical Society, 6:3 (1982), 357–381 | DOI | MR

[2] Berdinskii D. A., Taimanov I. A., “Poverkhnosti v trekhmernykh gruppakh Li”, Sibirskii matematicheskii zhurnal, 46:6 (2005), 1248–1264 | MR | Zbl

[3] Kyrov V. A., “Analiticheskii metod vlozheniya mnogomernykh psevdoevklidovykh geometrii”, Sibirskie elektronnye matematicheskie izvestiya, 15 (2018), 741–758 | DOI | MR | Zbl

[4] Kyrov V. A., “Analiticheskii metod vlozheniya evklidovoi i psevdoevklidovoi geometrii”, Trudy instituta matematiki i mekhaniki UrO RAN, 23, no. 2, 2017, 167–181 | DOI

[5] Kyrov V. A., “Analiticheskoe vlozhenie geometrii postoyannoi krivizny na psevdosferei”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 19:3 (2019), 246–257 | DOI | MR | Zbl

[6] Kyrov V. A., “Vlozhenie mnogomernykh osobykh rasshirenii psevdoevklidovykh geometrii”, Chelyab. fiz.-matem. zhurn., 3:4 (2018), 408–420 | DOI | MR | Zbl

[7] Mikhailichenko G. G., Malyshev V. M., “Fenomenologicheskaya simmetriya i funktsionalnye uravneniya”, Izvestiya vuzov. Matematika, 2001, no. 7, 77–79 | MR

[8] Mikhailichenko G. G., “Reshenie funktsionalnykh uravnenii v teorii fizicheskikh struktur”, Doklady AN SSSR, 206:5 (1972), 1056–1058 | Zbl

[9] Simonov A. A., “Obobschenie tochno tranzitivnykh grupp”, Izvestiya RAN. Seriya matematicheskaya, 78:6 (2014), 153–178 | DOI | MR | Zbl

[10] Simonov A. A., “Psevdomatrichnye gruppy i fizicheskie struktury”, Sibirskii matematicheskii zhurnal, 56:1 (2015), 211–226 | MR | Zbl

[11] Mikhailichenko G. G., Matematicheskie osnovy i rezultaty teorii fizicheskikh struktur, Gorno-Altaiskii gosudarstvennyi universitet, Gorno-Altaisk, 2016

[12] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1963

[14] Belko I. V., “O vyrozhdennykh rimanovykh metrikakh”, Matem. zametki, 18:5 (1975), 767–774 | MR | Zbl

[15] Dyakonov V. P., Maple 10/11/12/13/14 v matematicheskikh raschetakh, DMS Press, M., 2014