On subgroups in Artin groups with a tree structure
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 118-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, the author continues to consider issues related to the problem of freedom in Artin groups with a woody structure, and published jointly with V. N. Bezverkhnim in the Chebyshev Collection in 2014. In particular, the following subgroup theorem is proved for Artin groups with a tree structure: if $H$ is a finitely generated subgroup of the Artin group with a tree structure, and the intersection of $H$ with any subgroup conjugate to a cyclic subgroup. generated by the generating element of the group, there is a unit subgroup, then there is an algorithm describing the process of constructing free subgroups in $H$. The study of free subgroups in various classes of groups was carried out by many outstanding mathematicians, the fundamental results are presented in a number of textbooks on group theory, monographs and articles. Artin's groups have been actively studied since the beginning of the last century. If the Artin group corresponds to a finite tree graph such that its vertices correspond to generating groups, and every edge connecting the vertices corresponds to a defining relation connecting the corresponding generators, then we have an Artin group with a tree structure. An Artin group with a woody structure can be represented as a tree product of two-generators Artin groups united by infinite cyclic subgroups. In the process of proving the main result, the following methods were used: the reduction of the set of generators to a special set introduced by V. N. Bezverkhnim as a generalization of the Nielsen set to amalgamated products of groups, as well as the representation of a subgroup as a free product of groups and the assignment of a group using a graph.
Keywords: Artin group with tree structure, subgroup, amalgamated product of groups.
@article{CHEB_2022_23_3_a7,
     author = {I. V. Dobrynina},
     title = {On subgroups in {Artin} groups with a tree structure},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {118--132},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a7/}
}
TY  - JOUR
AU  - I. V. Dobrynina
TI  - On subgroups in Artin groups with a tree structure
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 118
EP  - 132
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a7/
LA  - ru
ID  - CHEB_2022_23_3_a7
ER  - 
%0 Journal Article
%A I. V. Dobrynina
%T On subgroups in Artin groups with a tree structure
%J Čebyševskij sbornik
%D 2022
%P 118-132
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a7/
%G ru
%F CHEB_2022_23_3_a7
I. V. Dobrynina. On subgroups in Artin groups with a tree structure. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 118-132. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a7/

[1] Bezverkhnii V. N., Karpova O. Yu., “Problemy ravenstva i sopryazhennosti slov v gruppakh Artina s drevesnoi strukturoi”, Izvestiya Tulskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 67–82

[2] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980

[3] Kurosh A. G., Teoriya grupp, Fizmatlit, M., 2011 | MR

[4] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974

[5] Romanovskii N. S., “Svobodnye podgruppy v konechno opredelennykh gruppakh”, Algebra i logika, 16:1 (1977), 88–97 | MR | Zbl

[6] Adyan S. I., Durnev V. G., “Algoritmicheskie problemy dlya grupp i polugrupp”, UMN, 55:2 (2000), 3–94 | DOI | MR | Zbl

[7] Guba V. S., “Ob usloviyakh, pri kotorykh 2-porozhdennye podgruppy v gruppakh s malym sokrascheniem svobodny”, Izvestiya vuzov. Ser. Matematika, 1986, no. 7, 12–19 | Zbl

[8] Arzhantseva G. N., Olshanskii A. Yu., “Obschnost klassa grupp, v kotorykh podgruppy s menshim chislom porozhdayuschikh svobodny”, Matematicheskie zametki, 59:4 (1996), 489–496 | DOI | Zbl

[9] Arzhantseva G. N., “O gruppakh, v kotorykh podgruppy s zadannym chislom porozhdayuschikh svobodny”, Fundamentalnaya i prikladnaya matematika, 3:3 (1997), 675–683 | MR | Zbl

[10] Kapovich I., Schup P., “Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion”, Proc. London Math. Soc., 88:1 (2004), 89–113 | DOI | MR | Zbl

[11] Bezverkhnii V. N., Dobrynina I. V., “O probleme svobody v gruppakh Kokstera s drevesnoi strukturoi”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 1:1 (2014), 5–13 | MR

[12] Bezverkhnii V. N., “O peresechenii podgrupp v $HNN$-gruppakh”, Fundamentalnaya i prikladnaya matematika, 4:1 (1998), 199–222 | MR | Zbl

[13] Bezverkhnii V. N., Dobrynina I. V., “O svobodnykh podgruppakh v gruppakh Artina s drevesnoi strukturoi”, Chebyshevskii sbornik, 15:1 (2014), 32–42 | MR | Zbl

[14] Bezverkhnii V. N., “Nerazreshimost problemy vkhozhdeniya v gruppakh Artina konechnogo tipa”, Sibirskii matematicheskii zhurnal, 26:5 (1995), 27–42 | MR

[15] Bezverkhnii V. N., Rollov E. V., “O podgruppakh svobodnogo proizvedeniya grupp”, Sovremennaya algebra, 1 (1974), 16–31 | Zbl

[16] Bezverkhnyaya I. S., “O sopryazhennosti konechnykh mnozhestv podgrupp v svobodnom proizvedenii grupp”, Algoritmicheskie problemy teorii grupp i polugrupp, 1981, 102–116 | MR

[17] Bezverkhnii V. N., “Reshenie problemy vkhozhdeniya v klasse $HNN$-grupp”, Algoritmicheskie problemy teorii grupp i polugrupp, 1981, 20–61 | MR

[18] Bezverkhnii V. N., “Reshenie problemy vkhozhdeniya dlya odnogo klassa grupp”, Voprosy teorii grupp i polugrupp, 1972, 3–86

[19] Bezverkhnii V. N., “Reshenie problemy vkhozhdeniya v nekotorykh klassakh grupp s odnim opredelyayuschim sootnosheniem”, Algoritmicheskie problemy teorii grupp i polugrupp, 1986, 3–21