Monoid of products of zeta functions of monoids of natural numbers
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 102-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies algebraic structures arising with respect to the multiplication operation of two sets of natural numbers. The main objects of study are the monoid $\mathbb{MN}$ of monoids of natural numbers and the monoid $\mathbb{SN}$ of products of arbitrary subsets of a natural series. Also, the monoid will be $\mathbb{SN}^*=\mathbb{SN}\setminus\ptyset\$. An important property of these monoids is the fact that the set of all idempotents in the monoid $\mathbb{SN}$ except for the zero element coincides with the set of idempotents of the monoid $\mathbb{SN}^*$ forms the monoid $\mathbb{MN}$. The presence of such a fact allowed us to consider the order. With respect to the order of $A\le B$ and binary operations $\inf$, $\sup$ the monoid $\mathbb{MN}$ is an irregular, complete A-lattice. The paper distinguishes the concepts of A-lattice as an object of general algebra and T-lattice as an object of number theory and geometry of numbers. The paper defines the structure of a complete metric space with a non-Archimedean metric on the monoid $\mathbb{SN}$. This made it possible to prove a theorem on the convergence of a sequence of Dirichlet series over convergent sequences of natural numbers. If we consider the product of two zeta functions of monoids of natural numbers, then it will be a zeta function of a monoid of natural numbers only when these monoids are mutually simple. In general, their product will be a Dirichlet series with natural coefficients over a monoid equal to the product of the monoids of the cofactors. This monoid generated by the zeta functions of the monoids of natural numbers is denoted by $\mathbb{MD}$. It is shown that the monoids $\mathbb{MN}$ and $\mathbb{MD}$ are non-isomorphic. The paper defines two small categories $\mathcal{MN}$ and $\mathcal{SN}$ and studies some of their properties.
Keywords: a monoid of natural numbers, a lattice by a monoid of natural numbers, a metric space of subsets of a natural series, a zeta function of a monoid, a Dirichlet series, a small category of monoids of natural numbers.
@article{CHEB_2022_23_3_a6,
     author = {N. N. Dobrovol'skii and M. N. Dobrovol'skii and N. M. Dobrovol'skii and I. B. Kozhukhov and I. Yu. Rebrova},
     title = {Monoid of products of zeta functions of monoids of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - M. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
AU  - I. B. Kozhukhov
AU  - I. Yu. Rebrova
TI  - Monoid of products of zeta functions of monoids of natural numbers
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 102
EP  - 117
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/
LA  - ru
ID  - CHEB_2022_23_3_a6
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A M. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%A I. B. Kozhukhov
%A I. Yu. Rebrova
%T Monoid of products of zeta functions of monoids of natural numbers
%J Čebyševskij sbornik
%D 2022
%P 102-117
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/
%G ru
%F CHEB_2022_23_3_a6
N. N. Dobrovol'skii; M. N. Dobrovol'skii; N. M. Dobrovol'skii; I. B. Kozhukhov; I. Yu. Rebrova. Monoid of products of zeta functions of monoids of natural numbers. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 102-117. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/

[1] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp.

[2] Delone B. N., Faddeev D. K., “Teoriya irratsionalnostei tretei stepeni”, Nauchn. tr. Mat. in-t im. V. A. Steklova, 11, 1940 | Zbl

[3] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 187–207 | DOI | MR

[4] N. N. Dobrovolskii, “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105 | DOI | MR | Zbl

[5] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Gipoteza o "zagraditelnom ryade" dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123 | DOI | MR | Zbl

[6] Dobrovolskii N. N., “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150 | DOI | MR | Zbl

[7] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevckii sbornik, 19:2 (2018), 123–141 | DOI | Zbl

[8] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O monoide kvadratichnykh vychetov”, Chebyshevckii sbornik, 19:3 (2018), 95–108 | DOI | Zbl

[9] Dobrovolskii N. N., “O dvukh asimptoticheskikh formulakh v teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 19:3 (2018), 109–134 | DOI | Zbl

[10] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176 | DOI | MR | Zbl

[11] N. N. Dobrovolskii, “Odna modelnaya dzeta-funktsiya monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 148–163 | DOI | Zbl

[12] N. N. Dobrovolskii, N. M. Dobrovolskii, I. Yu. Rebrova, A. V. Rodionov, “Monoidy naturalnykh chisel v teoretiko-chislovom metode v priblizhennom analize”, Chebyshevckii sbornik, 20:1 (2019), 164–179 | DOI

[13] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 180–196 | MR | Zbl

[14] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “Ob odnom obobschennom eilerovom proizvedenii, zadayuschem meromorfnuyu funktsiyu na vsei kompleksnoi ploskosti”, Chebyshevckii sbornik, 20:2 (2019), 156–168 | DOI | MR | Zbl

[15] Ivanets Kh., Kovalskii E., Analiticheskaya teoriya chisel, MTsNMO, M., 2014, 712 pp.

[16] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1952, 407 pp.

[17] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974, 188 pp.

[18] Chan Heng Huat, Analytic Number Theory for Undergraduates, World Scientific Publishing Company, 2009 | MR | Zbl