Monoid of products of zeta functions of monoids of natural numbers
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 102-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies algebraic structures arising with respect to the multiplication operation of two sets of natural numbers. The main objects of study are the monoid $\mathbb{MN}$ of monoids of natural numbers and the monoid $\mathbb{SN}$ of products of arbitrary subsets of a natural series. Also, the monoid will be $\mathbb{SN}^*=\mathbb{SN}\setminus\ptyset\$. An important property of these monoids is the fact that the set of all idempotents in the monoid $\mathbb{SN}$ except for the zero element coincides with the set of idempotents of the monoid $\mathbb{SN}^*$ forms the monoid $\mathbb{MN}$. The presence of such a fact allowed us to consider the order. With respect to the order of $A\le B$ and binary operations $\inf$, $\sup$ the monoid $\mathbb{MN}$ is an irregular, complete A-lattice. The paper distinguishes the concepts of A-lattice as an object of general algebra and T-lattice as an object of number theory and geometry of numbers. The paper defines the structure of a complete metric space with a non-Archimedean metric on the monoid $\mathbb{SN}$. This made it possible to prove a theorem on the convergence of a sequence of Dirichlet series over convergent sequences of natural numbers. If we consider the product of two zeta functions of monoids of natural numbers, then it will be a zeta function of a monoid of natural numbers only when these monoids are mutually simple. In general, their product will be a Dirichlet series with natural coefficients over a monoid equal to the product of the monoids of the cofactors. This monoid generated by the zeta functions of the monoids of natural numbers is denoted by $\mathbb{MD}$. It is shown that the monoids $\mathbb{MN}$ and $\mathbb{MD}$ are non-isomorphic. The paper defines two small categories $\mathcal{MN}$ and $\mathcal{SN}$ and studies some of their properties.
Keywords: a monoid of natural numbers, a lattice by a monoid of natural numbers, a metric space of subsets of a natural series, a zeta function of a monoid, a Dirichlet series, a small category of monoids of natural numbers.
@article{CHEB_2022_23_3_a6,
     author = {N. N. Dobrovol'skii and M. N. Dobrovol'skii and N. M. Dobrovol'skii and I. B. Kozhukhov and I. Yu. Rebrova},
     title = {Monoid of products of zeta functions of monoids of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {102--117},
     year = {2022},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - M. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
AU  - I. B. Kozhukhov
AU  - I. Yu. Rebrova
TI  - Monoid of products of zeta functions of monoids of natural numbers
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 102
EP  - 117
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/
LA  - ru
ID  - CHEB_2022_23_3_a6
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A M. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%A I. B. Kozhukhov
%A I. Yu. Rebrova
%T Monoid of products of zeta functions of monoids of natural numbers
%J Čebyševskij sbornik
%D 2022
%P 102-117
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/
%G ru
%F CHEB_2022_23_3_a6
N. N. Dobrovol'skii; M. N. Dobrovol'skii; N. M. Dobrovol'skii; I. B. Kozhukhov; I. Yu. Rebrova. Monoid of products of zeta functions of monoids of natural numbers. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 102-117. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a6/

[1] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp.

[2] Delone B. N., Faddeev D. K., “Teoriya irratsionalnostei tretei stepeni”, Nauchn. tr. Mat. in-t im. V. A. Steklova, 11, 1940 | Zbl

[3] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 187–207 | DOI | MR

[4] N. N. Dobrovolskii, “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105 | DOI | MR | Zbl

[5] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Gipoteza o "zagraditelnom ryade" dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123 | DOI | MR | Zbl

[6] Dobrovolskii N. N., “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150 | DOI | MR | Zbl

[7] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevckii sbornik, 19:2 (2018), 123–141 | DOI | Zbl

[8] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O monoide kvadratichnykh vychetov”, Chebyshevckii sbornik, 19:3 (2018), 95–108 | DOI | Zbl

[9] Dobrovolskii N. N., “O dvukh asimptoticheskikh formulakh v teorii giperbolicheskoi dzeta-funktsii reshetok”, Chebyshevskii sb., 19:3 (2018), 109–134 | DOI | Zbl

[10] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176 | DOI | MR | Zbl

[11] N. N. Dobrovolskii, “Odna modelnaya dzeta-funktsiya monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 148–163 | DOI | Zbl

[12] N. N. Dobrovolskii, N. M. Dobrovolskii, I. Yu. Rebrova, A. V. Rodionov, “Monoidy naturalnykh chisel v teoretiko-chislovom metode v priblizhennom analize”, Chebyshevckii sbornik, 20:1 (2019), 164–179 | DOI

[13] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 180–196 | MR | Zbl

[14] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “Ob odnom obobschennom eilerovom proizvedenii, zadayuschem meromorfnuyu funktsiyu na vsei kompleksnoi ploskosti”, Chebyshevckii sbornik, 20:2 (2019), 156–168 | DOI | MR | Zbl

[15] Ivanets Kh., Kovalskii E., Analiticheskaya teoriya chisel, MTsNMO, M., 2014, 712 pp.

[16] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1952, 407 pp.

[17] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974, 188 pp.

[18] Chan Heng Huat, Analytic Number Theory for Undergraduates, World Scientific Publishing Company, 2009 | MR | Zbl