On an expansion real numbers on some sequences
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 50-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper theorems on the expression of real numbers on multiplicative number system, Fibonacci sequence and integral valued sequences satisfiing recurrent correlations and connected with Pisot–Vidgajraghavan, are proven. It pay a special attention to “explicit formulas” and conditions of the uniqueness of such representations. We note that unifiing of an expression of a real number over inverse values of a multiplicaticative system permits to get the estimation of the form $$ e-\sum_{k=0}^n\frac 1{k!}=\frac{x_n}{n!}, \frac 1{n+1}\leq x_n\frac 1n. $$ Expressions of numbers over the sequence of inverse of Fibonacci numbers essentially uses these representation throw powers of “the gold section” $\varphi=\frac{1+\sqrt 5}{2}.$ Systems numbers connected with Pisot–Vidgajraghavana were considered less than in details, as demands to make a properties of examinated numbers more concrete.
Keywords: multiplicative number system, the Fibonacci's sequence.
@article{CHEB_2022_23_3_a3,
     author = {A. K. Giyasi and I. P. Mikhailov and V. N. Chubarikov},
     title = {On an expansion real numbers on some sequences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {50--60},
     year = {2022},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a3/}
}
TY  - JOUR
AU  - A. K. Giyasi
AU  - I. P. Mikhailov
AU  - V. N. Chubarikov
TI  - On an expansion real numbers on some sequences
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 50
EP  - 60
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a3/
LA  - ru
ID  - CHEB_2022_23_3_a3
ER  - 
%0 Journal Article
%A A. K. Giyasi
%A I. P. Mikhailov
%A V. N. Chubarikov
%T On an expansion real numbers on some sequences
%J Čebyševskij sbornik
%D 2022
%P 50-60
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a3/
%G ru
%F CHEB_2022_23_3_a3
A. K. Giyasi; I. P. Mikhailov; V. N. Chubarikov. On an expansion real numbers on some sequences. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 50-60. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a3/

[1] Hardy G. H., Littlewood J. E., “The fractional part of $n^k\theta$”, Acta math., 37 (1914) | MR

[2] Borel E., “Les probabilités dénombarables et leurs applications arithmétiques”, Rend Circolo math. Palermo, 27 (1909)

[3] Gelfond A. O., “Ob odnom obschem svoistve sistem schisleniya”, Izv. AN SSSR, ser. matem., 23 (1959) (in Russian) ; Избр.тр., 366–371 | Zbl

[4] Zeckendorf E., “Reprśentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. R. Sci. Liège, 41 (1972), 179–182 (in French) | MR | Zbl

[5] Dickson L. E., History of the theory of numbers, Ch. 17, Carnegie Inst. of Washigton, 1919 | MR

[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, Drofa, M., 2006, 640 pp.

[7] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo inostr. lit-ry, M., 1961, 212 pp.

[8] Kholl M., Kombinatorika, Izd-vo “Mir”, M., 1970, 424 pp. | MR

[9] Bernulli D., “Combinatorial theory”, Comment. Acad.Sci. Petrop., 3 (1728), 85–100

[10] Knut D. E., Iskusstvo programmirovaniya, Uch. posobie, v. 1, Osnovnye algoritmy, 3-e izd., Izd. dom “Vilyams”, M., 2000, 720 pp. | MR

[11] de Moivre A., Philos. Trans., 32 (1922), 162–178

[12] Chebyshev P. L., Teoriya veroyatnostei, §23, Izd-vo AN SSSR, 1936, 143–147

[13] Landau E., Osnovy analiza, IL, M., 1947

[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: teoriya i prilozheniya, Nauka, M., 1987, 344 pp. | MR

[15] Mineev M. P., Chubarikov V. N., Lektsii po arifmeticheskim voprosam kriptografii, OOO “Luch”, M., 2014, 224 pp.

[16] Ghyasi A. H., “A generalization of the Gel'fond theorem concerning number systems”, Russian Journal of Mathematical Physics, 14:3 (2007), 370 | DOI | MR | Zbl