On the solution of the model kinetic equation ES
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a method for finding a solution to a linearized ellipsoidal-statistical kinetic equation (ES) with a homogeneous boundary condition based on the Chebyshev polynomial approximation in the framework of the problem of modeling the axial flow of a rarefied gas in a long channel. The channel is formed from two cylinders having a common central axis. Diffuse Maxwell reflection is used as a model for the reflection of gas molecules from cylinders. The gas flow is due to a small absolute value of the pressure gradient directed along the axis of the cylinders. The calculation of the mass flow of gas in the channel is carried out depending on the rarefaction parameter and the ratio of the radii of the cylinders. The unknown function approximating the solution of the linearized ES equation is represented as a partial sum of the expansion in Chebyshev polynomials of the first kind. By choosing interpolation nodes and applying the properties of finite sums of Chebyshev polynomials, the problem is reduced to a system of linear algebraic equations with respect to the values of the desired function at these nodes. The expressions for the gas mass velocity in the channel and the gas mass flow are obtained in terms of the partial sums of the series of Chebyshev polynomials.
Keywords: Chebyshev polynomials of the first kind, ellipsoidal-statistical kinetic equation, polynomial approximation.
@article{CHEB_2022_23_3_a2,
     author = {O. V. Germider and V. N. Popov},
     title = {On the solution of the model kinetic equation {ES}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a2/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - On the solution of the model kinetic equation ES
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 37
EP  - 49
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a2/
LA  - ru
ID  - CHEB_2022_23_3_a2
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T On the solution of the model kinetic equation ES
%J Čebyševskij sbornik
%D 2022
%P 37-49
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a2/
%G ru
%F CHEB_2022_23_3_a2
O. V. Germider; V. N. Popov. On the solution of the model kinetic equation ES. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 37-49. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a2/

[1] Holway L.H., “New statistical models for kinetic theory: Methods of construction”, Physics of Fluids, 9 (1966), 1658–1673 | DOI

[2] Andries P., Bourgat J-F., Le Tallec P., Perthame B., “Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases”, Comput Methods Appl Mech Eng., 191:31 (2002), 3369–3390 | DOI | MR | Zbl

[3] Graur I.A., Polikarpov A.P., “Comparison of different kinetic models for the heat transfer problem”, Heat Mass Transfer., 46:2 (2009), 237–244 | DOI

[4] Belyi V.V., “Derivation of model kinetic equation”, Europhysics Letters, 111 (2015), 40011 | DOI

[5] Chen S., Xu K., Cai Q., “A comparison and unification of ellipsoidal statistical and Shakhov BGK models”, Adv. Appl. Math. Mech., 7 (2015), 245–266 | DOI | MR | Zbl

[6] Ambrus V. E., Sharipov F., Sofonea V., “Comparison of the Shakhov and ellipsoidal models for the Boltzmann equation and DSMC for ab initio-based particle interactions”, Computers and Fluids, 211 (2020), 104637 | DOI | MR | Zbl

[7] Frolova A.A., Titarev V.A., “Kineticheskie metody resheniya nestatsionarnykh zadach so struinymi techeniyami”, Matematika i matematicheskoe modelirovanie, 4 (2019), 34–51

[8] Breyiannis G., Varoutis S., Valougeorgis D., “Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter”, European Journal of Mechanics B/Fluids, 27 (2008), 609–622 | DOI | Zbl

[9] Baseri A., Abbasbandy S., Babolian E., “A collocation method for fractional diffusion equation in a long time with Chebyshev functions”, Applied Mathematics and Computation, 322 (2018), 55–65 | DOI | MR | Zbl

[10] Shilkov A.V., “Razlozhenie operatora rasseyaniya uravneniya perenosa chastits v ryad po sfericheskim tenzoram”, Preprinty IPM im. M.V.Keldysha, 2018, 249, 28 pp.

[11] Bhatnagar P. L., Gross E. P., Krook M. A., “Model for collision process in gases”, Physical Review, 94 (1954), 511–525 | DOI | Zbl

[12] Cercignani C., Mathematical Methods in Kinetic Theory, Plenum Press, New York, 1969, 227 pp. | MR | Zbl

[13] Mason J., Handscomb D., Chebyshev polynomials, CRC Press, Florida, 2003, 360 pp. | MR | Zbl

[14] Boyd J., Chebyshev and Fourier Spectral Methods, second ed., Dover, New York, 2000, 668 pp. | MR

[15] Clenshaw C. W., Curtis A. R., “A method for numerical integration on an automatic computer”, Num. Math., 2 (1960), 197–205 | DOI | MR | Zbl