Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_3_a2, author = {O. V. Germider and V. N. Popov}, title = {On the solution of the model kinetic equation {ES}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {37--49}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a2/} }
O. V. Germider; V. N. Popov. On the solution of the model kinetic equation ES. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 37-49. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a2/
[1] Holway L.H., “New statistical models for kinetic theory: Methods of construction”, Physics of Fluids, 9 (1966), 1658–1673 | DOI
[2] Andries P., Bourgat J-F., Le Tallec P., Perthame B., “Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases”, Comput Methods Appl Mech Eng., 191:31 (2002), 3369–3390 | DOI | MR | Zbl
[3] Graur I.A., Polikarpov A.P., “Comparison of different kinetic models for the heat transfer problem”, Heat Mass Transfer., 46:2 (2009), 237–244 | DOI
[4] Belyi V.V., “Derivation of model kinetic equation”, Europhysics Letters, 111 (2015), 40011 | DOI
[5] Chen S., Xu K., Cai Q., “A comparison and unification of ellipsoidal statistical and Shakhov BGK models”, Adv. Appl. Math. Mech., 7 (2015), 245–266 | DOI | MR | Zbl
[6] Ambrus V. E., Sharipov F., Sofonea V., “Comparison of the Shakhov and ellipsoidal models for the Boltzmann equation and DSMC for ab initio-based particle interactions”, Computers and Fluids, 211 (2020), 104637 | DOI | MR | Zbl
[7] Frolova A.A., Titarev V.A., “Kineticheskie metody resheniya nestatsionarnykh zadach so struinymi techeniyami”, Matematika i matematicheskoe modelirovanie, 4 (2019), 34–51
[8] Breyiannis G., Varoutis S., Valougeorgis D., “Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter”, European Journal of Mechanics B/Fluids, 27 (2008), 609–622 | DOI | Zbl
[9] Baseri A., Abbasbandy S., Babolian E., “A collocation method for fractional diffusion equation in a long time with Chebyshev functions”, Applied Mathematics and Computation, 322 (2018), 55–65 | DOI | MR | Zbl
[10] Shilkov A.V., “Razlozhenie operatora rasseyaniya uravneniya perenosa chastits v ryad po sfericheskim tenzoram”, Preprinty IPM im. M.V.Keldysha, 2018, 249, 28 pp.
[11] Bhatnagar P. L., Gross E. P., Krook M. A., “Model for collision process in gases”, Physical Review, 94 (1954), 511–525 | DOI | Zbl
[12] Cercignani C., Mathematical Methods in Kinetic Theory, Plenum Press, New York, 1969, 227 pp. | MR | Zbl
[13] Mason J., Handscomb D., Chebyshev polynomials, CRC Press, Florida, 2003, 360 pp. | MR | Zbl
[14] Boyd J., Chebyshev and Fourier Spectral Methods, second ed., Dover, New York, 2000, 668 pp. | MR
[15] Clenshaw C. W., Curtis A. R., “A method for numerical integration on an automatic computer”, Num. Math., 2 (1960), 197–205 | DOI | MR | Zbl