Refinement of the mean angle estimation in the Feyesh Toth problem
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 245-248
Cet article a éte moissonné depuis la source Math-Net.Ru
The Fejes Tóth problem about the maximum $E_{*}$ of the mean value of the sum of angles between lines in $\mathbb{R}^{3}$ with a common center is considered. L. Fejes Tóth suggested that $E_{*}=\frac{\pi}{3}=1.047\ldots$. This conjecture has not yet been proven. D. Bilyk and R.W. Matzke proved that $E_{*}\le 1.110\ldots$. We refine this estimate using an extremal problem of the Delsarte type: $E_{*}\le A_{*}1.08326$. Using the dual problem $B_{*}$ we show that the solution of the $A_{*}$ problem does not allow us to prove the Fejes Tóth conjecture, since $1.05210$.
Mots-clés :
Fejes Tóth conjecture, Legendre polynomial
Keywords: unit sphere, linear programming bound, Delsarte problem.
Keywords: unit sphere, linear programming bound, Delsarte problem.
@article{CHEB_2022_23_3_a17,
author = {D. V. Gorbachev and D. R. Lepetkov},
title = {Refinement of the mean angle estimation in the {Feyesh} {Toth} problem},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {245--248},
year = {2022},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a17/}
}
D. V. Gorbachev; D. R. Lepetkov. Refinement of the mean angle estimation in the Feyesh Toth problem. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 245-248. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a17/
[1] Andreev N.N., Yudin V.A., “Ekstremalnye raspolozheniya tochek na sfere”, Matem. prosv., 1997, no. 1, 115–125
[2] Bilyk D., Matzke R.W., “On the Fejes Tóth problem about the sum of angles between lines”, Proc. Amer. Math. Soc., 147:1 (2019), 51–59 | DOI | MR | Zbl
[3] Fodor F., V{\i}gh V., Zarnócz T., “On the angle sum of lines”, Arch. Math. (Basel), 106:1 (2016), 91–100 | DOI | MR | Zbl