Refinement of the mean angle estimation in the Feyesh Toth problem
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 245-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fejes Tóth problem about the maximum $E_{*}$ of the mean value of the sum of angles between lines in $\mathbb{R}^{3}$ with a common center is considered. L. Fejes Tóth suggested that $E_{*}=\frac{\pi}{3}=1.047\ldots$. This conjecture has not yet been proven. D. Bilyk and R.W. Matzke proved that $E_{*}\le 1.110\ldots$. We refine this estimate using an extremal problem of the Delsarte type: $E_{*}\le A_{*}1.08326$. Using the dual problem $B_{*}$ we show that the solution of the $A_{*}$ problem does not allow us to prove the Fejes Tóth conjecture, since $1.05210$.
Keywords: Fejes Tóth conjecture, unit sphere, Legendre polynomial, linear programming bound, Delsarte problem.
@article{CHEB_2022_23_3_a17,
     author = {D. V. Gorbachev and D. R. Lepetkov},
     title = {Refinement of the mean angle estimation in the {Feyesh} {Toth} problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {245--248},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a17/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - D. R. Lepetkov
TI  - Refinement of the mean angle estimation in the Feyesh Toth problem
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 245
EP  - 248
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a17/
LA  - ru
ID  - CHEB_2022_23_3_a17
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A D. R. Lepetkov
%T Refinement of the mean angle estimation in the Feyesh Toth problem
%J Čebyševskij sbornik
%D 2022
%P 245-248
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a17/
%G ru
%F CHEB_2022_23_3_a17
D. V. Gorbachev; D. R. Lepetkov. Refinement of the mean angle estimation in the Feyesh Toth problem. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 245-248. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a17/

[1] Andreev N.N., Yudin V.A., “Ekstremalnye raspolozheniya tochek na sfere”, Matem. prosv., 1997, no. 1, 115–125

[2] Bilyk D., Matzke R.W., “On the Fejes Tóth problem about the sum of angles between lines”, Proc. Amer. Math. Soc., 147:1 (2019), 51–59 | DOI | MR | Zbl

[3] Fodor F., V{\i}gh V., Zarnócz T., “On the angle sum of lines”, Arch. Math. (Basel), 106:1 (2016), 91–100 | DOI | MR | Zbl