Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_3_a15, author = {A. A. Tretshev and A. E. Gvozdev and N. S. Yushenko and A. A. Kalinin}, title = {Nonlinear mathematical model of relation of second-rank tensors for composite materials}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {224--237}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/} }
TY - JOUR AU - A. A. Tretshev AU - A. E. Gvozdev AU - N. S. Yushenko AU - A. A. Kalinin TI - Nonlinear mathematical model of relation of second-rank tensors for composite materials JO - Čebyševskij sbornik PY - 2022 SP - 224 EP - 237 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/ LA - ru ID - CHEB_2022_23_3_a15 ER -
%0 Journal Article %A A. A. Tretshev %A A. E. Gvozdev %A N. S. Yushenko %A A. A. Kalinin %T Nonlinear mathematical model of relation of second-rank tensors for composite materials %J Čebyševskij sbornik %D 2022 %P 224-237 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/ %G ru %F CHEB_2022_23_3_a15
A. A. Tretshev; A. E. Gvozdev; N. S. Yushenko; A. A. Kalinin. Nonlinear mathematical model of relation of second-rank tensors for composite materials. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 224-237. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/
[1] D.W.Schmueser, “Nonlinear Stress-Strain and Strength Response of Axisymmetric Bimodulus Composite Material Shells”, AIAA Journal, 21:12 (1983), 1742–1747 | DOI
[2] L.N.Reddy, C.W.Bert, “On the Behavior of Plates Laminated of Bimodulus Composite Materials”, ZAMM, 62:6 (1982), 213–219 | DOI | Zbl
[3] R.M.Jones, “A Nonsymmetric Compliance Matrix Approach to Nonlinear Multimodulus Ortotropic Materials”, AIAA Journal, 15:10 (1977), 1436–1443 | DOI
[4] R.M.Jones, “Modeling Nonlinear Deformation of Carbon-Carbon Composite Material”, AIAA Journal, 18:8 (1980), 995–1001 | DOI
[5] R.M.Jones, “Bucling of Stiffened Multilayered Circular Shells with Different Ortotropic Moduli in Tension and Compression”, AIAA Journal, 9:5 (1971), 917–923 | DOI | Zbl
[6] A.F.Kregers, R.D.Maksimov, R.P.Turtsinysh, “Nelineinaya polzuchest tkanevogo stekloplastika pri nekotorykh vidakh slozhnogo napryazhennogo sostoyaniya”, Mekhanika polimerov, 1973, no. 2, 212–218
[7] E.V.Amelina i dr., “O nelineinom deformirovanii ugleplastikov: eksperiment, model, raschet”, IVT SO RAN: Vychislitelnye tekhnologii, 20:5 (2015), 27–52 | Zbl
[8] R.A.Kayumov, S.A.Lukankin, V.N.Paimushin, S.A.Kholmogorov, “Identifikatsiya mekhanicheskikh kharakteristik armirovannykh voloknami kompozitov”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 157, no. 4, 2015, 112–132 | MR
[9] L.N.Shafigullin, A.A.Bobrishev, V.T.Erofeev, A.A.Treshchev, A.N.Shafigullina, “Development of the recommendations on selection of glass-fiber reiforced polyurethanes for vehicle parts”, International Journal of Applied Engineering Research, 10:23 (2015), 43758–43762
[10] A.V.Roze, I.G.Zhigun, M.N.Dushin, “Trekharmirovannye tkanye materialy”, Mekhanika polimerov, 1970, no. 3, 471–476
[11] R.M.Jones, D.A.R.Nelson, “Theoretical-experimental correlation of material models for non-linear deformation of graphite”, AIAA Journal, 14:10 (1976), 1427–1435 | DOI
[12] R.M.Jones, “Stress-Strain Relations for Materials with Different Moduli in Tension and Compression”, AIAA Journal, 15:1 (1977), 16–25 | DOI
[13] A.A.Zolochevskii, V.N.Kuznetsov, “Raschet anizotropnykh obolochek iz raznomodulnykh materialov pri neosesimmetrichnom nagruzhenii”, Dinamika i prochnost tyazhelykh mashin, DGU, Dnepropetrovsk, 1989, 84–92
[14] A.A. Treschev, Teoriya deformirovaniya i prochnosti raznosoprotivlyayuschikhsya materialov, TulGU, Tula, 2020, 359 pp.
[15] Z.P.Bazant, P.D.Bhat, “Endochronic Theory of Inelasticity and Failure of Concrete”, Journal of the Engineering Mechanics Division, ASCE, 102:EM4 (1976), 701–722 | DOI
[16] H.B.Kupfer, “Das nicht-linear Verhalten des Betons bei Zweiachsinger Beanspruchung”, Beton und Stahlbetonbau, 1973, no. 11, 269–274
[17] M.E.Tasuji, F.O.Slate, A.H.Nilson, “Stress-Strain Response and Fracture of Concrete in Biaxial Loading”, ACI Journal, 1979, no. 7, 806–812
[18] M.Ya.Leonov, K.N.Rusinko, “O mekhanizme deformatsii polukhrupkogo tela”, Plastichnost i khrupkost, ILIM, Frunze, 1967, 86–102
[19] M.Ya.Leonov, V.A.Panyaev, K.N.Rusinko, “Zavisimosti mezhdu deformatsiyami i napryazheniyami dlya polukhrupkikh tel”, Inzh. zhurn. MTT, 1967, no. 6, 26–32
[20] G.S.Pisarenko, A.A.Lebedev, Deformirovanie i prochnost materialov pri slozhnom napryazhennom sostoyanii, Naukova dumka, Kiev, 1976, 416 pp.
[21] S.A.Elsufev, “Issledovanie deformirovaniya ftoroplasta-4 pri lineinom i ploskom napryazhennom sostoyaniyakh”, Mekhanika polimerov, 1968, no. 4, 742–746
[22] S.A.Elsufev, V.M.Chebanov, “Izuchenie deformirovaniya ftoroplasta v usloviyakh ploskogo napryazhennogo sostoyaniya”, Issled. po uprugosti i plastichnosti, 8, Izd-vo LGU, L., 1971, 209–213
[23] S.B.Ainbinder, M.G.Laka, I.Yu.Maiors, “Vliyanie gidrostaticheskogo davleniya na mekhanicheskie svoistva polimernykh materialov”, Mekhanika polimerov, 1965, no. 1, 65–75
[24] S. B. Ainbinder, K. I. Alksne, E. L. Tyupina, M. G. Laka, Svoistva polimerov pri vysokikh davleniyakh, Nauka, M., 1973, 118 pp.
[25] N.I.Derevyanko, “Svoistva armirovannogo polistirola pri kratkovremennom rastyazhenii, szhatii i izgibe”, Mekhanika polimerov, 1968, no. 6, 1059–1064
[26] P.V.Bozhanov, A.ATreschev, “Opredelenie prochnostnykh kriteriev pri vozniknovenii plasticheskikh deformatsii v polikarbonate”, Innovatsii i investitsii, 2018, no. 12, 323–326
[27] C.W.Bert, “Models for Fibrous Composite with Different Properties in Tension and Compression”, Transaction of the ASME. Ser. D, 99:4 (1977), 344–349
[28] N.M.Matchenko, L.A.Tolokonnikov, A.A.Treschev, “Opredelyayuschie sootnosheniya izotropnykh raznosoprotivlyayuschikhsya sred. Ch. 1. Kvazilineinye sootnosheniya”, Izv. RAN. MTT, 1995, no. 1, 73–78
[29] N.M.Matchenko, L.A.Tolokonnikov, A.A.Treschev, “Opredelyayuschie sootnosheniya izotropnykh raznosoprotivlyayuschikhsya sred. Ch. 2. Nelineinye sootnosheniya”, Izv. RAN. MTT, 1999, no. 4, 87–95
[30] A.A.Treschev, A.A.Bobrishev, L.N.Shafigullin, “Constitutive relations for isotropic materials allowing quasilinear approximation of the deformation law”, IOP Conference Series: Materials Science and Engineering, 481 (2019), UNSP012014, 1–7 | DOI
[31] S.A.Ambartsumyan, “Osnovnye uravneniya i sootnosheniya raznomodulnoi teorii uprugosti anizotropnogo tela”, Izv. AN SSSR. MTT, 1969, no. 3, 51–61
[32] E.V.Lomakin, “Sootnosheniya teorii uprugosti dlya anizotropnogo tela, deformatsionnye kharakteristiki kotorykh zavisyat ot vida napryazhennogo sostoyaniya”, Izv. AN SSSR. MTT, 1983, no. 3, 63–69
[33] A.A.Treschev, “Potentsialnaya zavisimost mezhdu deformatsiyami i napryazheniyami dlya ortotropnykh fizicheski nelineinykh materialov”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2017, no. 4-1 (324), 71–74
[34] A.A.Treschev, Yu.A.Zavyalova, M.A.Lapshina, “Variant modeli deformirovaniya ortotropnykh kompozitnykh materialov”, Ekspert: Teoriya i praktika (Nauchno-prakticheskii zhurnal), 2020, no. 3 (6), 62–68 | DOI
[35] A.Grin, Dzh.Adkins, Bolshie uprugie deformatsii i nelineinaya mekhanika sploshnoi sredy, Mir, M., 1965, 456 pp. | MR
[36] G.Kauderer, Nelineinaya mekhanika, Izd-vo inostr. lit., M., 1961, 779 pp. | MR
[37] A.A.Treschev, Yu.A.Zavyalova, M.A.Lapshina, A.E.Gvozdev, O.V.Kuzovleva, E.S.Krupitsyn, “Matematicheskie opredelyayuschie uravneniya deformirovaniya materialov s dvoinoi anizotropiei”, Chebyshevskii sbornik, 22:4 (80) (2021), 369–383 | DOI | MR
[38] B.S.Tursunov, “O svoistvakh potentsiala napryazhenii uprugikh tel”, PMM, 34:1 (1970), 15–22