Nonlinear mathematical model of relation of second-rank tensors for composite materials
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 224-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analysis of the deformation processes of both long-known and new polymer, composite and synthetic materials used in building structures, parts of apparatuses, machines, as well as power plants revealed their specific properties. It is established that many similar materials have orthotropy of the structure with simultaneous manifestation of deformation anisotropy or heterogeneity. Induced deformation anisotropy or mechanical inhomogeneity is caused by the dependence of stiffness and strength characteristics on the type of stress state. In previous works of the authors, it has been shown that traditional models of deformation of such materials and their mathematical representations lead to gross errors that are clearly manifested in the calculation of various structures. At the same time, the theories of deformation of composite materials with "complicated properties  specially developed for them by other authors in the last 40 years, are very contradictory and have insurmountable disadvantages. The authors of the presented work have previously developed nonlinear energy relations of strain and stress tensors, for determining the constants of which a wide range of experiments is recommended. However, among the experimental tests, it is necessary to involve experiments on complex stress states, many of which are currently practically unrealizable. Therefore, in 2021, a quasi-linear deformation potential was postulated, represented in the main axes of orthotropy of materials. For this option, it turned out to be sufficient to calculate constants according to the simplest experiments. Despite the undoubted advantages of this potential, nevertheless, real nonlinear diagrams were approximated by direct rays using the least squares method, and this, with qualitative adequacy, led to quantitative errors. In this regard, the presented article attempts to avoid the general rules for the formulation of a complete nonlinear potential relationship of strain and stress tensors. In this direction, a nonlinear mathematical model of the connection of two second-rank tensors is postulated, combining the form of the generalized Hooke's law for orthotropic material, the theory of small elastic-plastic deformations and the tensor space technique of normalized stresses. This approach allowed us to determine nonlinear material functions, limiting ourselves to a set of traditional simplest experiments. A remark is made about the uniqueness of solutions to boundary value problems, which boils down to checking the stability of the equations of state in the small Drucker. Within the framework of the proposed mathematical model, widely known experimental diagrams for a carbon-graphite composite are processed, for which nonlinear material functions are obtained.
Keywords: nonlinear material functions, deformation anisotropy, structural orthotropy, equations of state, second-rank tensors, main axes of orthotropy, least squares method.
@article{CHEB_2022_23_3_a15,
     author = {A. A. Tretshev and A. E. Gvozdev and N. S. Yushenko and A. A. Kalinin},
     title = {Nonlinear mathematical model of relation of second-rank tensors for composite materials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {224--237},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/}
}
TY  - JOUR
AU  - A. A. Tretshev
AU  - A. E. Gvozdev
AU  - N. S. Yushenko
AU  - A. A. Kalinin
TI  - Nonlinear mathematical model of relation of second-rank tensors for composite materials
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 224
EP  - 237
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/
LA  - ru
ID  - CHEB_2022_23_3_a15
ER  - 
%0 Journal Article
%A A. A. Tretshev
%A A. E. Gvozdev
%A N. S. Yushenko
%A A. A. Kalinin
%T Nonlinear mathematical model of relation of second-rank tensors for composite materials
%J Čebyševskij sbornik
%D 2022
%P 224-237
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/
%G ru
%F CHEB_2022_23_3_a15
A. A. Tretshev; A. E. Gvozdev; N. S. Yushenko; A. A. Kalinin. Nonlinear mathematical model of relation of second-rank tensors for composite materials. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 224-237. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a15/

[1] D.W.Schmueser, “Nonlinear Stress-Strain and Strength Response of Axisymmetric Bimodulus Composite Material Shells”, AIAA Journal, 21:12 (1983), 1742–1747 | DOI

[2] L.N.Reddy, C.W.Bert, “On the Behavior of Plates Laminated of Bimodulus Composite Materials”, ZAMM, 62:6 (1982), 213–219 | DOI | Zbl

[3] R.M.Jones, “A Nonsymmetric Compliance Matrix Approach to Nonlinear Multimodulus Ortotropic Materials”, AIAA Journal, 15:10 (1977), 1436–1443 | DOI

[4] R.M.Jones, “Modeling Nonlinear Deformation of Carbon-Carbon Composite Material”, AIAA Journal, 18:8 (1980), 995–1001 | DOI

[5] R.M.Jones, “Bucling of Stiffened Multilayered Circular Shells with Different Ortotropic Moduli in Tension and Compression”, AIAA Journal, 9:5 (1971), 917–923 | DOI | Zbl

[6] A.F.Kregers, R.D.Maksimov, R.P.Turtsinysh, “Nelineinaya polzuchest tkanevogo stekloplastika pri nekotorykh vidakh slozhnogo napryazhennogo sostoyaniya”, Mekhanika polimerov, 1973, no. 2, 212–218

[7] E.V.Amelina i dr., “O nelineinom deformirovanii ugleplastikov: eksperiment, model, raschet”, IVT SO RAN: Vychislitelnye tekhnologii, 20:5 (2015), 27–52 | Zbl

[8] R.A.Kayumov, S.A.Lukankin, V.N.Paimushin, S.A.Kholmogorov, “Identifikatsiya mekhanicheskikh kharakteristik armirovannykh voloknami kompozitov”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 157, no. 4, 2015, 112–132 | MR

[9] L.N.Shafigullin, A.A.Bobrishev, V.T.Erofeev, A.A.Treshchev, A.N.Shafigullina, “Development of the recommendations on selection of glass-fiber reiforced polyurethanes for vehicle parts”, International Journal of Applied Engineering Research, 10:23 (2015), 43758–43762

[10] A.V.Roze, I.G.Zhigun, M.N.Dushin, “Trekharmirovannye tkanye materialy”, Mekhanika polimerov, 1970, no. 3, 471–476

[11] R.M.Jones, D.A.R.Nelson, “Theoretical-experimental correlation of material models for non-linear deformation of graphite”, AIAA Journal, 14:10 (1976), 1427–1435 | DOI

[12] R.M.Jones, “Stress-Strain Relations for Materials with Different Moduli in Tension and Compression”, AIAA Journal, 15:1 (1977), 16–25 | DOI

[13] A.A.Zolochevskii, V.N.Kuznetsov, “Raschet anizotropnykh obolochek iz raznomodulnykh materialov pri neosesimmetrichnom nagruzhenii”, Dinamika i prochnost tyazhelykh mashin, DGU, Dnepropetrovsk, 1989, 84–92

[14] A.A. Treschev, Teoriya deformirovaniya i prochnosti raznosoprotivlyayuschikhsya materialov, TulGU, Tula, 2020, 359 pp.

[15] Z.P.Bazant, P.D.Bhat, “Endochronic Theory of Inelasticity and Failure of Concrete”, Journal of the Engineering Mechanics Division, ASCE, 102:EM4 (1976), 701–722 | DOI

[16] H.B.Kupfer, “Das nicht-linear Verhalten des Betons bei Zweiachsinger Beanspruchung”, Beton und Stahlbetonbau, 1973, no. 11, 269–274

[17] M.E.Tasuji, F.O.Slate, A.H.Nilson, “Stress-Strain Response and Fracture of Concrete in Biaxial Loading”, ACI Journal, 1979, no. 7, 806–812

[18] M.Ya.Leonov, K.N.Rusinko, “O mekhanizme deformatsii polukhrupkogo tela”, Plastichnost i khrupkost, ILIM, Frunze, 1967, 86–102

[19] M.Ya.Leonov, V.A.Panyaev, K.N.Rusinko, “Zavisimosti mezhdu deformatsiyami i napryazheniyami dlya polukhrupkikh tel”, Inzh. zhurn. MTT, 1967, no. 6, 26–32

[20] G.S.Pisarenko, A.A.Lebedev, Deformirovanie i prochnost materialov pri slozhnom napryazhennom sostoyanii, Naukova dumka, Kiev, 1976, 416 pp.

[21] S.A.Elsufev, “Issledovanie deformirovaniya ftoroplasta-4 pri lineinom i ploskom napryazhennom sostoyaniyakh”, Mekhanika polimerov, 1968, no. 4, 742–746

[22] S.A.Elsufev, V.M.Chebanov, “Izuchenie deformirovaniya ftoroplasta v usloviyakh ploskogo napryazhennogo sostoyaniya”, Issled. po uprugosti i plastichnosti, 8, Izd-vo LGU, L., 1971, 209–213

[23] S.B.Ainbinder, M.G.Laka, I.Yu.Maiors, “Vliyanie gidrostaticheskogo davleniya na mekhanicheskie svoistva polimernykh materialov”, Mekhanika polimerov, 1965, no. 1, 65–75

[24] S. B. Ainbinder, K. I. Alksne, E. L. Tyupina, M. G. Laka, Svoistva polimerov pri vysokikh davleniyakh, Nauka, M., 1973, 118 pp.

[25] N.I.Derevyanko, “Svoistva armirovannogo polistirola pri kratkovremennom rastyazhenii, szhatii i izgibe”, Mekhanika polimerov, 1968, no. 6, 1059–1064

[26] P.V.Bozhanov, A.ATreschev, “Opredelenie prochnostnykh kriteriev pri vozniknovenii plasticheskikh deformatsii v polikarbonate”, Innovatsii i investitsii, 2018, no. 12, 323–326

[27] C.W.Bert, “Models for Fibrous Composite with Different Properties in Tension and Compression”, Transaction of the ASME. Ser. D, 99:4 (1977), 344–349

[28] N.M.Matchenko, L.A.Tolokonnikov, A.A.Treschev, “Opredelyayuschie sootnosheniya izotropnykh raznosoprotivlyayuschikhsya sred. Ch. 1. Kvazilineinye sootnosheniya”, Izv. RAN. MTT, 1995, no. 1, 73–78

[29] N.M.Matchenko, L.A.Tolokonnikov, A.A.Treschev, “Opredelyayuschie sootnosheniya izotropnykh raznosoprotivlyayuschikhsya sred. Ch. 2. Nelineinye sootnosheniya”, Izv. RAN. MTT, 1999, no. 4, 87–95

[30] A.A.Treschev, A.A.Bobrishev, L.N.Shafigullin, “Constitutive relations for isotropic materials allowing quasilinear approximation of the deformation law”, IOP Conference Series: Materials Science and Engineering, 481 (2019), UNSP012014, 1–7 | DOI

[31] S.A.Ambartsumyan, “Osnovnye uravneniya i sootnosheniya raznomodulnoi teorii uprugosti anizotropnogo tela”, Izv. AN SSSR. MTT, 1969, no. 3, 51–61

[32] E.V.Lomakin, “Sootnosheniya teorii uprugosti dlya anizotropnogo tela, deformatsionnye kharakteristiki kotorykh zavisyat ot vida napryazhennogo sostoyaniya”, Izv. AN SSSR. MTT, 1983, no. 3, 63–69

[33] A.A.Treschev, “Potentsialnaya zavisimost mezhdu deformatsiyami i napryazheniyami dlya ortotropnykh fizicheski nelineinykh materialov”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2017, no. 4-1 (324), 71–74

[34] A.A.Treschev, Yu.A.Zavyalova, M.A.Lapshina, “Variant modeli deformirovaniya ortotropnykh kompozitnykh materialov”, Ekspert: Teoriya i praktika (Nauchno-prakticheskii zhurnal), 2020, no. 3 (6), 62–68 | DOI

[35] A.Grin, Dzh.Adkins, Bolshie uprugie deformatsii i nelineinaya mekhanika sploshnoi sredy, Mir, M., 1965, 456 pp. | MR

[36] G.Kauderer, Nelineinaya mekhanika, Izd-vo inostr. lit., M., 1961, 779 pp. | MR

[37] A.A.Treschev, Yu.A.Zavyalova, M.A.Lapshina, A.E.Gvozdev, O.V.Kuzovleva, E.S.Krupitsyn, “Matematicheskie opredelyayuschie uravneniya deformirovaniya materialov s dvoinoi anizotropiei”, Chebyshevskii sbornik, 22:4 (80) (2021), 369–383 | DOI | MR

[38] B.S.Tursunov, “O svoistvakh potentsiala napryazhenii uprugikh tel”, PMM, 34:1 (1970), 15–22