Mathematical optimization of the average particle size of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 178-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently, one of the main problems of using the heat-resistant nickel alloy ZhS6U is associated with the presence of expensive components in its composition, such as Ni, Ti, Mo, Co, etc. and the need to reuse it by grinding. One of the effective, but insufficiently studied metallurgical methods of grinding metal waste is electrodispersion. To date, in the modern scientific and technical literature there is no complete information about the composition, structure and properties of the particles of the ZhS6U alloy obtained in the conditions of electroerosive metallurgy. In order to predict the high physical and mechanical properties of products from the resulting charge, it was necessary to optimize the modes of electroerosive dispersion of waste of the ZhS6U alloy by the method of experiment planning. For a charge with a spherical particle shape, one of the main technological parameters is the optimal granulometric composition, therefore, the optimization of the process of obtaining the charge from the waste of the ZhS6U alloy was carried out according to the average particle size. The electroerosive dispersion of the waste of the ZhS6U alloy was carried out on an experimental installation (RF Patent No. 2449859). As a result of exposure to short-term electrical discharges, particles of various shapes and sizes were formed. Optimization of the process of electrodispersion of particles obtained by the EED of the waste of the ZhS6U alloy was carried out by experimental determination of a combination of levels of factors at which the required value of the average diameter of the particles of the electroerosion charge was achieved. To do this, the method of steep ascent of Box and Wilson was used. Optimization of the process of electrodispersion of waste of the ZhS6U alloy in distilled water and lighting kerosene was carried out taking into account such factors as the voltage at the electrodes, the capacity of the discharge capacitors and the pulse repetition frequency. According to the conducted series of experiments, the limiting values of the optimization parameter for the average size of electroerosive particles were determined, which were: for distilled water – 50.4 microns with a capacity of discharge capacitors of 65.5 UF, a voltage at the electrodes of 200 V, a pulse repetition frequency of 200 Hz; for lighting kerosene - 58.4 microns with a capacity of discharge capacitors of 65.5 UF, a voltage at the electrodes of 200 V, a pulse repetition frequency of 200 Hz. Carrying out the planned measures will solve the problem of recycling heat-resistant nickel alloy waste and their reuse in the manufacture of critical parts of mechanical engineering.
Keywords: waste of heat-resistant nickel alloy ZhS6U, electroerosive dispersion, powder particles, optimization, average particle size.
@article{CHEB_2022_23_3_a12,
     author = {E. V. Ageev and E. V. Ageeva and A. E. Gvozdev and E. A. Protopopov and V. O. Podanov},
     title = {Mathematical optimization of the average particle size of powders obtained by electroerosive dispersion of heat-resistant nickel alloy {ZHS6U}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {178--193},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a12/}
}
TY  - JOUR
AU  - E. V. Ageev
AU  - E. V. Ageeva
AU  - A. E. Gvozdev
AU  - E. A. Protopopov
AU  - V. O. Podanov
TI  - Mathematical optimization of the average particle size of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 178
EP  - 193
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a12/
LA  - ru
ID  - CHEB_2022_23_3_a12
ER  - 
%0 Journal Article
%A E. V. Ageev
%A E. V. Ageeva
%A A. E. Gvozdev
%A E. A. Protopopov
%A V. O. Podanov
%T Mathematical optimization of the average particle size of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U
%J Čebyševskij sbornik
%D 2022
%P 178-193
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a12/
%G ru
%F CHEB_2022_23_3_a12
E. V. Ageev; E. V. Ageeva; A. E. Gvozdev; E. A. Protopopov; V. O. Podanov. Mathematical optimization of the average particle size of powders obtained by electroerosive dispersion of heat-resistant nickel alloy ZHS6U. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 178-193. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a12/

[1] Novikova O. V., Kochetkov V. A., Vinogradov A. I., Zhukov A. A., Tikhonov A. A., Marinin S. F., “Primenenie gazoizostaticheskogo pressovaniya dlya povysheniya ekspluatatsionnoi nadezhnosti lopatok turbiny iz zharoprochnogo splava tipa ZhS6U”, Zagotovitelnye proizvodstva v mashinostroenii, 2007, no. 8, 54–56

[2] Kurikhina T. V., “Kinetika obrazovaniya intermetallida na osnove Ni3Al v zharoprochnom nikelevom splave ZhS6U”, Tekhnologiya mashinostroeniya, 2017, no. 1, 5–8

[3] Dobrynin D. A., Alekseeva M. S., Afanasev-Khodykin A. N., “Remont detalei goryachego trakta gazoturbinnogo dvigatelya iz zharoprochnogo nikelevogo splava marki ZhS6U”, Trudy VIAM, 2021, no. 5 (99), 3–13

[4] Mikhailenko S. V., Nastolnaya V. V., Borodikhin A. S., Golub R. S., “Issledovanie proizvoditelnosti obrabotki zharoprochnoi stali ZhS6U keramicheskimi plastinami”, Aktualnye nauchnye issledovaniya v sovremennom mire, 2020, no. 12-1(68), 128–131

[5] Bykov Yu. G., Logunov A. V., Razumovskii I. M., Frolov V. S., “Izmenenie plotnosti splava ZhS6U v protsesse ekspluatatsii”, Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 7 (625), 29–32

[6] Ospennikova O. G., Orlov M. R., “Povyshenie svoistv zharoprochnogo splava ZhS6U-VI putem goryachego izostaticheskogo pressovaniya i posleduyuschei termicheskoi obrabotki”, Materialovedenie, 2007, no. 9, 32–37

[7] Eremin E. N., Filippov Yu. O., Davletkildeev N. A., Minnekhanov G. N. Issledovanie struktury splava ZhS6U metodom atomno-silovoi mikroskopii, Omskii nauchnyi vestnik, 2011, no. 1 (97), 24–29

[8] Eremin E. N., Filippov Yu. O., Matalasova A. E., “Issledovanie karbidnykh faz v splave ZhS6U”, Omskii nauchnyi vestnik, 2014, no. 3 (133), 59–63

[9] Eremin E. N., Filippov Yu. O., Minnekhanov G. N., Lopaev B. E., “Issledovanie fazovykh prevraschenii v splave ZhS6U metodami termicheskogo analiza”, Omskii nauchnyi vestnik, 2013, no. 1 (117), 63–68

[10] Ravilov R. G., Petrova M. A., Drevnyak V. V., Saadatibai M., “Metodika otsenki dolgovechnosti pokrytiya na lopatkakh turbiny iz splavov ZhS6U I ZhS26VSNK”, Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2015, no. 222 (12), 201–206

[11] Ageeva E. V., Khor'yakova N. M., Ageev E. V., “Morphology of copper powder produced by electrospark dispersion from waste”, Russian Engineering Research, 34:11 (2014), 694–696 | DOI

[12] Ageeva E. V., Khor'yakova N. M., Ageev E. V., “Morphology and composition of copper electrospark powder suitable for sintering”, Russian Engineering Research, 35:1 (2015), 33–35 | DOI | MR

[13] Ageeva E. V., Ageev E. V., Latypov R. A., Ageeva E. V., “Investigation into the properties of electroerosive powders and hard alloy fabricated from them by isostatic pressing and sintering”, Russian Journal of Non-Ferrous Metals, 56:1 (2015), 52–62 | DOI | MR

[14] Ageeva E. V., Ageev E. V., Karpenko V. Y., “Nanopowder produced from high-speed steel waste by electrospark dispersion in water”, Russian Engineering Research, 35:3 (2015), 189–190 | DOI

[15] Latypov R. A., Ageeva E. V., Kruglyakov O. V., Latypova G. R., “Electroerosion micro- and nanopowders for the production of hard alloys”, Russian Metallurgy (Metally), 2016:6 (2016), 547–549 | DOI

[16] Latypov R. A., Ageev E. V., Latypova G. R., Altukhov A. Y., Ageeva E. V., “Elemental Composition of the Powder Particles Produced by Electric Discharge Dispersion of the Wastes of a VK8 Hard Alloy”, Russian Metallurgy (Metally), 2017:12 (2017), 1083–1085 | DOI

[17] Latypov R. A., Ageev E. V., Altukhov A. Y., Ageeva E. V., “Manufacture of Cobalt-Chromium Powders by the Electric Discharge Dispersion of Wastes and Their Investigation”, Russian Metallurgy (Metally), 2018:12 (2018), 1177–1180 | DOI

[18] Latypov R. A., Ageev E. V., Altukhov A. Y., Ageeva E. V., “Effect of Temperature on the Porosity of the Additive Products Made of the Dispersed Wastes of Cobalt-Chromium Alloys”, Russian Metallurgy (Metally), 2019:12 (2019), 1300–1303 | DOI

[19] Ageev E. V., Altukhov A. Yu., Ageeva E. V., Pykhtin A. I., “Structure and mechanical properties of powders obtained by electrodisperging cobalt-chromium alloy”, Journal of Applied Engineering Science, 19:1 (2021), 230–236 | DOI

[20] Ageeva E. V., Ageev E. V., Latypov R. A., “Properties of the VNZH Pseudoalloy Sintered from Spark Erosion Powders Fabricated in Distilled Water”, Russian Metallurgy (Metally), 6 (2021), 119–123

[21] Ageeva E. V., Ageev E. V., Kuzovleva O. V., Gvozdev A. E., “Mathematical optimization of the process of electrodispergation of the waste of the alloy of the residence permit”, Chebyshevskii Sbornik, 22:2 (2021), 389–401 | DOI

[22] Ageeva E. V., Ageev E. V., Kuzovleva O. V., Gvozdev A. E., “Development of scientific and technological foundations for a new environmentally friendly and waste-free process for grinding conductive waste into micro- and nanofractions powders”, Chebyshevskii Sbornik, 21:4 (2021), 314–326 | DOI | MR

[23] Ageev E. V., Ageeva E. V., Khoryakova N. M., “X-Ray methods for studying the surface of powder obtained by electroerosion dispersion of the waste of W-Ni-Fe 95 pseudoalloy in kerosene”, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 15:4 (2021), 723–727 | DOI

[24] Ageev E. V., Ageeva E. V., “Wear Resistance of Hardened Components Produced from Electrospark Cobalt-Chromium Powder by Additive Manufacturing”, Russian Engineering Research, 41:8 (2021), 731–733 | DOI