Distribution of products of shifted primes in arithmetic progressions with increasing difference
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 156-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the number of primes $p\leq x_1$, $p\leq x_2$ such that $p_1(p_2+a)\equiv l \pmod q$ with $q\leq x^{\mathrm{ae}_0}$, $x_1\geq x^{1-\alpha}$, $x_2\geq x^{\alpha}$, $$\mathrm{ae}_0=\frac{1}{2.5+\theta+\varepsilon}, \alpha\in \left[(\theta+\varepsilon)\frac{\ln q}{\ln x}, 1-2.5\frac{\ln q}{\ln x}\right],$$ where $\theta=1/2$, if $q$ is a cube free and $\theta=\frac{5}{6}$ otherwise. This is the refinement and generalization of the well-known formula of A.A.Karatsuba.
Keywords: Dirichlet character, shifted primes, short sum of characters with primes.
@article{CHEB_2022_23_3_a10,
     author = {Z. Kh. Rakhmonov},
     title = {Distribution of products of shifted primes in arithmetic progressions with increasing difference},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {156--168},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Distribution of products of shifted primes in arithmetic progressions with increasing difference
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 156
EP  - 168
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/
LA  - ru
ID  - CHEB_2022_23_3_a10
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Distribution of products of shifted primes in arithmetic progressions with increasing difference
%J Čebyševskij sbornik
%D 2022
%P 156-168
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/
%G ru
%F CHEB_2022_23_3_a10
Z. Kh. Rakhmonov. Distribution of products of shifted primes in arithmetic progressions with increasing difference. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 156-168. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/