Distribution of products of shifted primes in arithmetic progressions with increasing difference
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 156-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the number of primes $p\leq x_1$, $p\leq x_2$ such that $p_1(p_2+a)\equiv l \pmod q$ with $q\leq x^{\mathrm{ae}_0}$, $x_1\geq x^{1-\alpha}$, $x_2\geq x^{\alpha}$, $$\mathrm{ae}_0=\frac{1}{2.5+\theta+\varepsilon}, \alpha\in \left[(\theta+\varepsilon)\frac{\ln q}{\ln x}, 1-2.5\frac{\ln q}{\ln x}\right],$$ where $\theta=1/2$, if $q$ is a cube free and $\theta=\frac{5}{6}$ otherwise. This is the refinement and generalization of the well-known formula of A.A.Karatsuba.
Keywords: Dirichlet character, shifted primes, short sum of characters with primes.
@article{CHEB_2022_23_3_a10,
     author = {Z. Kh. Rakhmonov},
     title = {Distribution of products of shifted primes in arithmetic progressions with increasing difference},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {156--168},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Distribution of products of shifted primes in arithmetic progressions with increasing difference
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 156
EP  - 168
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/
LA  - ru
ID  - CHEB_2022_23_3_a10
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Distribution of products of shifted primes in arithmetic progressions with increasing difference
%J Čebyševskij sbornik
%D 2022
%P 156-168
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/
%G ru
%F CHEB_2022_23_3_a10
Z. Kh. Rakhmonov. Distribution of products of shifted primes in arithmetic progressions with increasing difference. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 156-168. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/

[1] Karatsuba A. A., “Raspredelenie proizvedenii sdvinutykh prostykh chisel v arifmeticheskikh progressiyakh”, Doklady AN SSSR, 192:4 (1970), 724–727 | Zbl

[2] Karatsuba A.A., “Arifmeticheskie problemy teorii kharakterov Dirikhle”, UMN, 63:4(382) (2008), 43–92 | DOI | MR | Zbl

[3] Petechuk M.M., “Summa znachenii funktsii delitelei v arifmeticheskikh progressiyakh s raznostyu, ravnoi stepeni nechetnogo prostogo chisla”, Izvestiya AN SSSR. Ser. matem., 43:4 (1979), 892–908 | MR | Zbl

[4] Chubarikov V.N., “Utochnenie granitsy nulei $L$-ryadov Dirikhle po modulyu, ravnomu stepeni prostogo chisla”, Vestnik MGU, 1973, no. 2, 46–52 | Zbl

[5] Friendlander J.B., Iwaniec H., “The divisor problem for arithemetic progressions”, Acta Arith., 45:3 (1985), 273–277 | DOI | MR

[6] Rakhmonov Z. Kh., “Raspredelenie chisel Khardi Littvluda v arifmeticheskikh progressiyakh”, Izvestiya AN SSSR. Seriya matematicheskaya, 52:1 (1989), 211–224

[7] Pan Chen Dong, Pan Chen Byao, Osnovy analiticheskoi teorii chisel, Pekin, 1991 (na kitaiskom yazyke)

[8] Montgomeri G., Multiplikativnaya teoriya chisel, izd-vo Mir, M., 1974

[9] Vaughan R., “Mean value theorems in prime number theory”, J. London Math. Soc. (2), 10 (1975), 153–162 | DOI | MR | Zbl

[10] Rakhmonov Z.Kh., “Teorema o srednem znachenii $\psi(x,\chi)$ i ee prilozheniya”, Izvestiya Rossiiskoi Akademii nauk. Seriya matematicheskaya, 57:4 (1993), 55–71 | Zbl

[11] Rakhmonov Z.Kh. Srednie znacheniya funktsii Chebysheva, Doklady Rossiiskoi Akademii nauk, 331:3 (1993), 281–282 | Zbl

[12] Rakhmonov Z. Kh., Nozirov O.O., “O srednikh znacheniyakh funktsii Chebysheva i ikh prilozheniyakh”, Chebyshevskii sbornik, 22:5(81) (2021), 198–222 | DOI | MR | Zbl

[13] Rakhmonov Z.Kh., “Teorema o srednem znachenii funktsii Chebysheva”, Izvestiya Rossiiskoi Akademii nauk. Seriya matematicheskaya, 58:3 (1994), 1277–139

[14] Rakhmonov Z.Kh., “Teorema o srednem znachenii v teorii prostykh chisel”, Doklady Rossiiskoi Akademii nauk, 349:5 (1996), 606–607 | MR | Zbl

[15] Timofeev H.M., “Raspredelenie arifmeticheskikh funktsii v korotkikh intervalakh v srednem po progressiyam”, Izvestiya AN SSSR. Ser. matem., 51:2 (1987), 341–362 | Zbl

[16] Vinogradov I.M., “Raspredelenie kvadratichnykh vychetov i nevychetov vida $p+k$ po prostomu modulyu”, Matematicheskii sbornik, 3:45 (1938), 311–320

[17] Vinogradov I.M., “Utochnenie metoda otsenki summ s prostymi chislami”, Izvestiya AN SSSR. Ser. matem., 7 (1943), 17–34 | Zbl

[18] Jutila M., “On the least Goldbach's number in an arithmetical progression with a prime difference”, Ann. Univ. Turku; Ser. A., I, 118 (1968) | MR | Zbl

[19] Vinogradov I.M., “Novyi podkhod k otsenke summy znachenii $\chi (p+k)$”, Izvestiya AN SSSR. Ser. matem., 16 (1952), 197–210 | Zbl

[20] Vinogradov I.M., “Uluchshenie otsenki dlya summy znachenii $\chi (p+k)$”, Izvestiya AN SSSR. Ser. matem., 17 (1953), 285–290 | Zbl

[21] Linnik Yu.V., “Noveishie raboty I. M. Vinogradova”, Tr. MIAN, 132, 1973, 27–29 | MR | Zbl

[22] Karatsuba A.A., “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, Doklady AN SSSR, 180:6 (1968), 1287–1289 | Zbl

[23] Karatsuba A.A., “Ob otsenkakh summ kharakterov”, Izvestiya AN SSSR. Ser. matem., 34 (1970), 20–30

[24] Karatsuba A.A., “Summy kharakterov s prostymi chislami”, Izvestiya AN SSSR. Ser. matem., 34 (1970), 299–321

[25] Karatsuba A.A., “O summakh kharakterov s prostymi chislami”, Doklady AN SSSR, 190:3 (1970), 517–518 | Zbl

[26] Rakhmonov Z.Kh., “O raspredelenii znachenii kharakterov Dirikhle”, UMN, 41:1 (1986), 201–202 | MR | Zbl

[27] Rakhmonov Z.Kh., “Ob openke summy kharakterov s prostymi chislami”, DAN Tadzhikskii SSR, 29:1 (1986), 16–20 | MR | Zbl

[28] Rakhmonov Z.Kh., “O raspredelenii znachenii kharakterov Dirikhle i ikh prilozheniya”, Tr. MIAN, 207, 1994, 286–296 | Zbl

[29] Rakhmonov Z.Kh., “O naimenshem goldbakhovom chisle v arifmeticheskoi progressii”, Izvestiya AN Tadzhikskii SSR. Otdelenie fiziko-matematicheskikh i geologo-khimicheskikh nauk, 1986, no. 2, 103–106 | MR | Zbl

[30] Huxley M.N., “On the difference between consecutive primes”, Inventiones mathematicae June, 15:2 (1971), 164–170 | DOI | MR

[31] Fridlandera Dzh.B., Gong K., Shparlinskii I.E., “Summy znachenii kharakterov na sdvinutykh prostykh chislakh”, Matem. zametki, 88:4 (2010), 605–619 | DOI

[32] Rakhmonov Z.Kh., “O raspredelenii znachenii kharakterov Dirikhle v posledovatelnosti sdvinutykh prostykh chisel”, Doklady AN Respubliki Tadzhikistan, 56:1 (2013), 5–9

[33] Rakhmonov Z.Kh., “Raspredelenie znachenii kharakterov Dirikhle v posledovatelnosti sdvinutykh prostykh chisel”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 13:4(2) (2013), 113–117 | Zbl

[34] Rakhmonov Z.Kh., “Summy kharakterov s prostymi chislami”, Chebyshevskii sbornik, 15:2(50) (2014), 73–100 | Zbl

[35] Kerr B., “Otsenki dlya summ multiplikativnykh kharakterov po sdvinutym prostym chislam”, Trudy MIAN, 314, 2021, 71–96 | DOI | Zbl

[36] Rakhmonov Z.Kh., “Summy znachenii neglavnykh kharakterov po posledovatelnosti sdvinutykh prostykh chisel”, Tr. MIAN, 299, 2017, 1–27

[37] Rakhmonov Z.Kh., “Ob otsenke summy znachenii neglavnykh kharakterov v posledovatelnosti sdvinutykh prostykh chisel”, Doklady AN RT, 60:9 (2017), 378–382

[38] Rakhmonov Z.Kh., “Sums of Values of Nonprincipal Characters over Shifted Primes”, Irregularities in the Distribution of Prime Numbers, eds. Pintz J., Rassias M., Springer, Cham, 2018, 187–217 | DOI | MR | Zbl