Distribution of products of shifted primes in arithmetic progressions with increasing difference
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 156-168
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an asymptotic formula for the number of primes $p\leq x_1$, $p\leq x_2$ such that $p_1(p_2+a)\equiv l \pmod q$ with $q\leq x^{\mathrm{ae}_0}$, $x_1\geq x^{1-\alpha}$, $x_2\geq x^{\alpha}$, $$\mathrm{ae}_0=\frac{1}{2.5+\theta+\varepsilon}, \alpha\in \left[(\theta+\varepsilon)\frac{\ln q}{\ln x}, 1-2.5\frac{\ln q}{\ln x}\right],$$ where $\theta=1/2$, if $q$ is a cube free and $\theta=\frac{5}{6}$ otherwise. This is the refinement and generalization of the well-known formula of A.A.Karatsuba.
Keywords:
Dirichlet character, shifted primes, short sum of characters with primes.
@article{CHEB_2022_23_3_a10,
author = {Z. Kh. Rakhmonov},
title = {Distribution of products of shifted primes in arithmetic progressions with increasing difference},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {156--168},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/}
}
TY - JOUR AU - Z. Kh. Rakhmonov TI - Distribution of products of shifted primes in arithmetic progressions with increasing difference JO - Čebyševskij sbornik PY - 2022 SP - 156 EP - 168 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/ LA - ru ID - CHEB_2022_23_3_a10 ER -
Z. Kh. Rakhmonov. Distribution of products of shifted primes in arithmetic progressions with increasing difference. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 156-168. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a10/