Measure estimate for $p$-adic Diophantine approximation
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36

Voir la notice de l'article provenant de la source Math-Net.Ru

A quantitative estimate for the measure of the set of $p$-adic numbers for which the inequality $|P(x)|_p$ for $w>3n/2+2$ has a solution in integral polynomials P of degree n and of height $H(P)$ at most $Q\in\mathbb{N}$, is established.
Keywords: Metric Diophantine approximation, $p$-adic numbers, Sprindzuk theorem.
@article{CHEB_2022_23_3_a1,
     author = {N. V. Budarina},
     title = {Measure estimate for $p$-adic {Diophantine} approximation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {19--36},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/}
}
TY  - JOUR
AU  - N. V. Budarina
TI  - Measure estimate for $p$-adic Diophantine approximation
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 19
EP  - 36
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/
LA  - en
ID  - CHEB_2022_23_3_a1
ER  - 
%0 Journal Article
%A N. V. Budarina
%T Measure estimate for $p$-adic Diophantine approximation
%J Čebyševskij sbornik
%D 2022
%P 19-36
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/
%G en
%F CHEB_2022_23_3_a1
N. V. Budarina. Measure estimate for $p$-adic Diophantine approximation. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/