Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_3_a1, author = {N. V. Budarina}, title = {Measure estimate for $p$-adic {Diophantine} approximation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {19--36}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/} }
N. V. Budarina. Measure estimate for $p$-adic Diophantine approximation. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/
[1] V. Beresnevich, and E. Kovalevskaya, “On Diophantine approximations of dependent quantities in the $p$-adic case”, Mat. Zametki, 73:1 (2003), 22–37 | DOI | MR | Zbl
[2] V. Beresnevich, V. Bernik and E. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl
[3] V. Bernik, D. Dickinson and J. Yuan, “Inhomogeneous Diophantine approximation on polynomial curves in $\mathbb{Q}_p$”, Acta Arith., 90 (1999), 37–48 | DOI | MR | Zbl
[4] N. Budarina and E. Zorin, “Non-homogeneous analogue of Khintchine's theorem in divergence case for simultaneous approximations in different metrics”, Siauliai Math. Semin., 4:2 (2009), 21–33 | MR | Zbl
[5] N. Budarina, “Diophantine approximation on the curves with non-monotonic error function in the $p$-adic case”, Chebishevskii Sbornik, 11:1 (2010), 74–80 | MR | Zbl
[6] N. Budarina, V. Bernik and D. Dickinson, “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl
[7] N. Budarina, “Simultaneous Diophantine approximation in the real and $p$-adic fields with nonmonotonic error function”, Lith. Math. J., 51:4 (2011), 461–471 | DOI | MR | Zbl
[8] N. Budarina and F. Götze, “On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders”, Dal'nevost. Mat. Zh., 15:2 (2015), 133–155 | MR | Zbl
[9] N. Budarina, “On the rate of convergence to zero of the measure of extremal sets in metric theory of transcendental numbers”, Math. Z., 293 (2019), 809–824 | DOI | MR | Zbl
[10] N. Budarina, “An effective estimate for the measure of the set of $p$-adic numbers with a given order of approximation”, International Journal of Number Theory, 16:3 (2020), 651–672 | DOI | MR | Zbl
[11] N. Budarina, “Quantitative estimate for the measure of the set of real numbers”, Glasgow Mathematical Journal, 64:2 (2022), 411–433 | DOI | MR | Zbl
[12] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004, 274 pp. | MR | Zbl
[13] D. Kleibock and G. Tomanov, “Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation”, Comment. Math. Helv., 82 (2007), 519–581 | DOI | MR
[14] A. Mohammadi and A. Salehi-Golsefidy, “S-arithmetic Khintchine-Type Theorem”, Geom. Funct. Anal., 19:4 (2009), 1147–1170 | DOI | MR | Zbl
[15] A. Mohammadi and A. Salehi-Golsefidy, “Simultaneous Diophantine approximation in non-degenerate $p$-adic manifolds”, Israel J. Math., 188 (2012), 231–258 | DOI | MR | Zbl
[16] V.G. Sprindzuk, Mahler's problem in metric Number Theory, Transl. Math. Monogr., 25, Amer. Math. Soc., Providenca, R.I., 1969 | MR