Measure estimate for $p$-adic Diophantine approximation
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36
Voir la notice de l'article provenant de la source Math-Net.Ru
A quantitative estimate for the measure of the set of $p$-adic numbers for which the inequality $|P(x)|_p$ for $w>3n/2+2$ has a solution in integral polynomials P of degree n and of height $H(P)$ at most $Q\in\mathbb{N}$, is established.
Keywords:
Metric Diophantine approximation, $p$-adic numbers, Sprindzuk theorem.
@article{CHEB_2022_23_3_a1,
author = {N. V. Budarina},
title = {Measure estimate for $p$-adic {Diophantine} approximation},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {19--36},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/}
}
N. V. Budarina. Measure estimate for $p$-adic Diophantine approximation. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/