Measure estimate for $p$-adic Diophantine approximation
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quantitative estimate for the measure of the set of $p$-adic numbers for which the inequality $|P(x)|_p$ for $w>3n/2+2$ has a solution in integral polynomials P of degree n and of height $H(P)$ at most $Q\in\mathbb{N}$, is established.
Keywords: Metric Diophantine approximation, $p$-adic numbers, Sprindzuk theorem.
@article{CHEB_2022_23_3_a1,
     author = {N. V. Budarina},
     title = {Measure estimate for $p$-adic {Diophantine} approximation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {19--36},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/}
}
TY  - JOUR
AU  - N. V. Budarina
TI  - Measure estimate for $p$-adic Diophantine approximation
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 19
EP  - 36
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/
LA  - en
ID  - CHEB_2022_23_3_a1
ER  - 
%0 Journal Article
%A N. V. Budarina
%T Measure estimate for $p$-adic Diophantine approximation
%J Čebyševskij sbornik
%D 2022
%P 19-36
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/
%G en
%F CHEB_2022_23_3_a1
N. V. Budarina. Measure estimate for $p$-adic Diophantine approximation. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 19-36. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a1/

[1] V. Beresnevich, and E. Kovalevskaya, “On Diophantine approximations of dependent quantities in the $p$-adic case”, Mat. Zametki, 73:1 (2003), 22–37 | DOI | MR | Zbl

[2] V. Beresnevich, V. Bernik and E. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory, 111:1 (2005), 33–56 | DOI | MR | Zbl

[3] V. Bernik, D. Dickinson and J. Yuan, “Inhomogeneous Diophantine approximation on polynomial curves in $\mathbb{Q}_p$”, Acta Arith., 90 (1999), 37–48 | DOI | MR | Zbl

[4] N. Budarina and E. Zorin, “Non-homogeneous analogue of Khintchine's theorem in divergence case for simultaneous approximations in different metrics”, Siauliai Math. Semin., 4:2 (2009), 21–33 | MR | Zbl

[5] N. Budarina, “Diophantine approximation on the curves with non-monotonic error function in the $p$-adic case”, Chebishevskii Sbornik, 11:1 (2010), 74–80 | MR | Zbl

[6] N. Budarina, V. Bernik and D. Dickinson, “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[7] N. Budarina, “Simultaneous Diophantine approximation in the real and $p$-adic fields with nonmonotonic error function”, Lith. Math. J., 51:4 (2011), 461–471 | DOI | MR | Zbl

[8] N. Budarina and F. Götze, “On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders”, Dal'nevost. Mat. Zh., 15:2 (2015), 133–155 | MR | Zbl

[9] N. Budarina, “On the rate of convergence to zero of the measure of extremal sets in metric theory of transcendental numbers”, Math. Z., 293 (2019), 809–824 | DOI | MR | Zbl

[10] N. Budarina, “An effective estimate for the measure of the set of $p$-adic numbers with a given order of approximation”, International Journal of Number Theory, 16:3 (2020), 651–672 | DOI | MR | Zbl

[11] N. Budarina, “Quantitative estimate for the measure of the set of real numbers”, Glasgow Mathematical Journal, 64:2 (2022), 411–433 | DOI | MR | Zbl

[12] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004, 274 pp. | MR | Zbl

[13] D. Kleibock and G. Tomanov, “Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation”, Comment. Math. Helv., 82 (2007), 519–581 | DOI | MR

[14] A. Mohammadi and A. Salehi-Golsefidy, “S-arithmetic Khintchine-Type Theorem”, Geom. Funct. Anal., 19:4 (2009), 1147–1170 | DOI | MR | Zbl

[15] A. Mohammadi and A. Salehi-Golsefidy, “Simultaneous Diophantine approximation in non-degenerate $p$-adic manifolds”, Israel J. Math., 188 (2012), 231–258 | DOI | MR | Zbl

[16] V.G. Sprindzuk, Mahler's problem in metric Number Theory, Transl. Math. Monogr., 25, Amer. Math. Soc., Providenca, R.I., 1969 | MR