Generalizations of some integral inequalities for Riemann--Liouville operator
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 161-169

Voir la notice de l'article provenant de la source Math-Net.Ru

The Chebyshev inquality is one of important inequalities in mathematics. It's a necessary tool in probability theory. The item of Chebyshev's inequality may also refer to Markov's inequality in the context of analysis. In[6, 7], using the usual Riemann–Liouville fractional integral operator $I^{\alpha }$, were established and proved some new integral inequalities for the Chebyshev fonctional \begin{equation} \nonumber T(f,g):=\frac{1}{b-a}\int^{b}_{a}f(x)g(x)dx-\frac{1}{b-a}\int^{b}_{a}f(x)dx\frac{1}{b-a}\int^{b}_{a}g(x)dx. \end{equation} In this work, we give some generalizations of Chebyshev-type integral inequalities by using Riemann—Liouville fractional integrals of function with respect to another function.
Keywords: Fractional integral, Chebyshev's inequality, Riemann—Liouville Fractional operator, generalizations.
@article{CHEB_2022_23_2_a9,
     author = {M. Sofrani and A. Senusi},
     title = {Generalizations of some integral inequalities for {Riemann--Liouville} operator},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {161--169},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/}
}
TY  - JOUR
AU  - M. Sofrani
AU  - A. Senusi
TI  - Generalizations of some integral inequalities for Riemann--Liouville operator
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 161
EP  - 169
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/
LA  - en
ID  - CHEB_2022_23_2_a9
ER  - 
%0 Journal Article
%A M. Sofrani
%A A. Senusi
%T Generalizations of some integral inequalities for Riemann--Liouville operator
%J Čebyševskij sbornik
%D 2022
%P 161-169
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/
%G en
%F CHEB_2022_23_2_a9
M. Sofrani; A. Senusi. Generalizations of some integral inequalities for Riemann--Liouville operator. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 161-169. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/