Generalizations of some integral inequalities for Riemann--Liouville operator
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 161-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Chebyshev inquality is one of important inequalities in mathematics. It's a necessary tool in probability theory. The item of Chebyshev's inequality may also refer to Markov's inequality in the context of analysis. In[6, 7], using the usual Riemann–Liouville fractional integral operator $I^{\alpha }$, were established and proved some new integral inequalities for the Chebyshev fonctional \begin{equation} \nonumber T(f,g):=\frac{1}{b-a}\int^{b}_{a}f(x)g(x)dx-\frac{1}{b-a}\int^{b}_{a}f(x)dx\frac{1}{b-a}\int^{b}_{a}g(x)dx. \end{equation} In this work, we give some generalizations of Chebyshev-type integral inequalities by using Riemann—Liouville fractional integrals of function with respect to another function.
Keywords: Fractional integral, Chebyshev's inequality, Riemann—Liouville Fractional operator, generalizations.
@article{CHEB_2022_23_2_a9,
     author = {M. Sofrani and A. Senusi},
     title = {Generalizations of some integral inequalities for {Riemann--Liouville} operator},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {161--169},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/}
}
TY  - JOUR
AU  - M. Sofrani
AU  - A. Senusi
TI  - Generalizations of some integral inequalities for Riemann--Liouville operator
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 161
EP  - 169
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/
LA  - en
ID  - CHEB_2022_23_2_a9
ER  - 
%0 Journal Article
%A M. Sofrani
%A A. Senusi
%T Generalizations of some integral inequalities for Riemann--Liouville operator
%J Čebyševskij sbornik
%D 2022
%P 161-169
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/
%G en
%F CHEB_2022_23_2_a9
M. Sofrani; A. Senusi. Generalizations of some integral inequalities for Riemann--Liouville operator. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 161-169. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a9/

[1] Kacar E., Kacar Z., Yildirim H., “Inequalities for Riemann–Liouville Fractional Integrals of a Function with respect to Another Function”, IJMSI, 13:1 (2018), 1–13 www.ijmsi.ir/article-1-696-en.pdf | MR | Zbl

[2] Halim B., Senouci A.E., “Some generalizations involving open problems of F.Qi”, Int. J. Open Problems Compt. Math., 12:1 (2019) www.ijopcm.org/Vol/2019/1.2.pdf | MR | Zbl

[3] Killbas A.A., Srivastava H.M., Trujillo J.J., Theory and application of fractional differential equations, Elsevier, Amsterdam, 2006 https://www.elsevier.com/books/theory-and-applications-of-fractional-differential-equations/kilbas/978-0-444-51832-3 | MR

[4] Chebyshev P.L., “Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites”, Proc. Math. Soc. Charkov, 1882, 93–98

[5] Gorenflo R., Mainardi F., Fractional calculus integral and differential equations of fractional order, Springer Verlag, Wien, 1997, 223–276 www.fracalmo.org | MR | Zbl

[6] Dahmani Z., “About some integral inequalities using Riemann–Liouville integrals”, General Mathematics, 20:4 (2012), 63–69 http://depmath.ulbsibiu.ro/genmath/index.html

[7] Dahmani Z., Belarbi S., “On some new fractional integral inequalities”, J.I.P.A.M., 10:3 (2009), 86 https://www.emis.de/journals/JIPAM/article1142.html?sid=1142 | Zbl

[8] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and derivatives: theory and applications, Gorbon and Breach Science publishers, Switzerland, 1993 https://www.twirpx.com/file/824445/ | MR | Zbl