On the squares and cubes in the set of finite fields
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 106-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a definition of the hinge mechanism, taking into account its kinematic nature. This definition differs significantly from that adopted by a number of mathematicians in recent works. If we use the definition accepted today, which does not take into account the kinematic background, then the classical result of A. B. Kempe [1] about the possibility of drawing by parts of an arbitrary plane algebraic curve with hinges of suitably chosen plane hinge mechanisms cannot be considered sufficiently substantiated by Kempe himself. This has been noted in the modern literature [6], and even led to accusations of Kempe in error. The development and modern substantiation of Kempe's result proposed in the works [6, 7] is, in essence, a modification of Kempe's method for constructing the required mechanism from brick mechanisms performing algebraic actions. However, it is based on the use of a complex language of modern algebraic geometry, which leads to the replacement of Kemp's short and transparent reasoning by an order of magnitude longer and difficult to understand texts. In our definition of the hinge mechanism, we can give a rigorous formulation of Kempe's theorem, for the proof of which Kempe's arguments with minimal refinements are sufficient. This updated proof is provided in the paper. The paper discusses the modern development of Kempé's result, and the claims against Kempé's reasoning. It also gives general ideas about mathematics that the author has in connection with the Kempé theorem and its modern development.
Keywords: hinge mechanisms, drawing algebraic curves, Kempe's theorem, configuration space, overripe mathematics.
@article{CHEB_2022_23_2_a6,
     author = {M. D. Kovalev},
     title = {On the squares and cubes in the set of finite fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {106--120},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a6/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - On the squares and cubes in the set of finite fields
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 106
EP  - 120
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a6/
LA  - ru
ID  - CHEB_2022_23_2_a6
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T On the squares and cubes in the set of finite fields
%J Čebyševskij sbornik
%D 2022
%P 106-120
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a6/
%G ru
%F CHEB_2022_23_2_a6
M. D. Kovalev. On the squares and cubes in the set of finite fields. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 106-120. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a6/

[1] Kempe A. V., “On a general method of describing plane curves of the $n^{th}$ degree by Linkwork”, Proc. of the London Math. Soc., 7:102 (1876), 213–216 | MR

[2] Gilbert D., Kon-Fossen S., Naglyadnaya geometriya, Nauka, M., 1981

[3] Kovalev M. D., “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | MR | Zbl

[4] Kovalev M.D., “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestnik MGTU, Seriya Mashinostroenie, 2001, no. 4, 33–51

[5] Kovalev M. D., Geometricheskie voprosy kinematiki i statiki, Lenand, URSS, M., 2019, 256 pp.

[6] Kapovich M., Millson J. J., “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107 | DOI | MR | Zbl

[7] King Henry C., Planar Linkages and Algebraic Sets, 1998, 22 pp., arXiv: math/9807023 | MR

[8] Jordan D., Steiner M., “Configuration Spaces of Mechanical Linkages”, Discrete Comput. Geom., 22 (1999), 297–315 | DOI | MR | Zbl

[9] Demain E., O'Rourke J., Geometric Folding Algorithms. Linkages, Origami, Polyhedra, Cambridge university press, New York, 2007 | MR | Zbl

[10] Oshemkov A.A., Popelenskii F.Yu., Tuzhilin A.A., Fomenko A.T., Shafarevich A.I., Kurs naglyadnoi geometrii i topologii, LENAND, M., 2015, 360 pp.

[11] Levitskii N. I., Teoriya mekhanizmov i mashin. Terminologiya, ed. N.I. Levitskii, Nauka, M., 1984

[12] King Henry C., Semiconfiguration spaces of planar linkages, arXiv: math/9810130

[13] King Henry C., Configuration Spaces of Linkages in $R^n$, 1998, 34 pp., arXiv: math/9811138

[14] Hopcroft J., Joseph D., Whitesides S., “Movement problems for 2-dimensional linkages”, SIAM J. Computing, 13 (1984), 610–629 | DOI | MR | Zbl

[15] Abbott T., Generalizations of Kempe's Universality Theorem, MS Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2008 http://web.mit.edu/tabbott/www/papers/mthesis.pdf

[16] Power S., Elementary proofs of Kempe universality, 2017, arXiv: 1511.09002v2 [math.MG] | MR

[17] Kovalev M. D., Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?, Itogi nauki i tekhniki, seriya Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 179, VINITI RAN, M., 16–28 | DOI

[18] Litlvud Dzh. E., Matematicheskaya smes, Nauka, M., 1990 | MR