Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_2_a6, author = {M. D. Kovalev}, title = {On the squares and cubes in the set of finite fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {106--120}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a6/} }
M. D. Kovalev. On the squares and cubes in the set of finite fields. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 106-120. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a6/
[1] Kempe A. V., “On a general method of describing plane curves of the $n^{th}$ degree by Linkwork”, Proc. of the London Math. Soc., 7:102 (1876), 213–216 | MR
[2] Gilbert D., Kon-Fossen S., Naglyadnaya geometriya, Nauka, M., 1981
[3] Kovalev M. D., “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | MR | Zbl
[4] Kovalev M.D., “Voprosy geometrii sharnirnykh ustroistv i skhem”, Vestnik MGTU, Seriya Mashinostroenie, 2001, no. 4, 33–51
[5] Kovalev M. D., Geometricheskie voprosy kinematiki i statiki, Lenand, URSS, M., 2019, 256 pp.
[6] Kapovich M., Millson J. J., “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107 | DOI | MR | Zbl
[7] King Henry C., Planar Linkages and Algebraic Sets, 1998, 22 pp., arXiv: math/9807023 | MR
[8] Jordan D., Steiner M., “Configuration Spaces of Mechanical Linkages”, Discrete Comput. Geom., 22 (1999), 297–315 | DOI | MR | Zbl
[9] Demain E., O'Rourke J., Geometric Folding Algorithms. Linkages, Origami, Polyhedra, Cambridge university press, New York, 2007 | MR | Zbl
[10] Oshemkov A.A., Popelenskii F.Yu., Tuzhilin A.A., Fomenko A.T., Shafarevich A.I., Kurs naglyadnoi geometrii i topologii, LENAND, M., 2015, 360 pp.
[11] Levitskii N. I., Teoriya mekhanizmov i mashin. Terminologiya, ed. N.I. Levitskii, Nauka, M., 1984
[12] King Henry C., Semiconfiguration spaces of planar linkages, arXiv: math/9810130
[13] King Henry C., Configuration Spaces of Linkages in $R^n$, 1998, 34 pp., arXiv: math/9811138
[14] Hopcroft J., Joseph D., Whitesides S., “Movement problems for 2-dimensional linkages”, SIAM J. Computing, 13 (1984), 610–629 | DOI | MR | Zbl
[15] Abbott T., Generalizations of Kempe's Universality Theorem, MS Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2008 http://web.mit.edu/tabbott/www/papers/mthesis.pdf
[16] Power S., Elementary proofs of Kempe universality, 2017, arXiv: 1511.09002v2 [math.MG] | MR
[17] Kovalev M. D., Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?, Itogi nauki i tekhniki, seriya Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 179, VINITI RAN, M., 16–28 | DOI
[18] Litlvud Dzh. E., Matematicheskaya smes, Nauka, M., 1990 | MR