Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_2_a4, author = {M. Yu. Zhitnaya}, title = {Modeling of minimal parametrical networks in euclidean spaces by means of linkages}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {74--87}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a4/} }
M. Yu. Zhitnaya. Modeling of minimal parametrical networks in euclidean spaces by means of linkages. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 74-87. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a4/
[1] Sosinskii A.B., Dvumernye poverkhnosti i konfiguratsionnye prostranstva sharnirnykh mekhanizmov. Lektsiya pervaya, Letnyaya shkola «Sovremennaya matematika», Dubna, 2007 http://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=130
[2] Sosinskii A.B., Dvumernye poverkhnosti i konfiguratsionnye prostranstva sharnirnykh mekhanizmov. Lektsiya vtoraya, Letnyaya shkola «Sovremennaya matematika», Dubna, 2007 http://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=131
[3] Mekhanizmy P.L. Chebysheva, Rossiiskii institut im. V.A. Steklova Rossiiskoi akademii nauk, 2009–2021 https://tcheb.ru/ | MR
[4] Kovalev M.D., Geometricheskie voprosy kinematiki i statiki, URSS Lenand, M., 2019
[5] Kovalev M.D., Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?, Itogi nauki i tekhniki, seriya Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 179, 2020, 16–28 | DOI
[6] Oshemkov A.A., Popelenskii F.Yu., Tuzhilin A.A., Fomenko A.T., Shafarevich A.I., Kurs naglyadnoi geometrii i topologii., URSS, M., 2014, 360 pp.
[7] Zhitnaya M.Yu., “Modelirovanie optimalnykh setei s pomoschyu sharnirnykh mekhanizmov”, Fundament. i prikl. matem., 22:6 (2019), 95–122
[8] Tuzhilin A.A., Fomenko A.T., “Mnogoznachnye otobrazheniya, minimalnye poverkhnosti i mylnye plenki”, Vestn. Mosk. un-ta, 1986, no. 3, 3–12 | MR
[9] Hwang F.K., “Linear time algorithm for full steiner trees”, Operations Research Letters, 4:5 (1986), 235–237 | DOI | MR | Zbl
[10] Melzak Z.A., “On the problem of Steiner”, Canadian Mathematical Bulletin, 4:2 (1961), 143–148 | DOI | MR | Zbl
[11] Kempe A.B., How to draw a straight line: a lecture on linkages, Macmillan Co., 1871, 51 pp.
[12] Kapovich M., Millson J.J., “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107 | DOI | MR | Zbl
[13] Ivanov A.O., Tuzhilin A.A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, USA, 1994, 432 pp. | MR | Zbl
[14] Gilbert E.N., Pollak H.O., “Steiner Minimal Trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[15] Abbott T.G., Generalizations of Kempe's Universality Theorem, Massachusetts Institute of Technology, Massachusetts, 2008, 86 pp.
[16] King H., Semiconfiguration spaces of planar linkages, arXiv: math/9810130
[17] H. King., Configuration spaces of linkages in $\mathbb{R}^n$, arXiv: math/9811138