Modeling of minimal parametrical networks in euclidean spaces by means of linkages
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 74-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linkages can be represented as devices consisting of solid bodies, for example, rods, some pairs of which are connected to each other by hinges, in other words they have a common point around which they can freely rotate. Linkages became widespread along with the development of instrumentation. One of the important first problems was to design a mechanism in which one of the hinges would move along a straight line segment. This issue has received several solutions, some of which were proposed by Peaucellier, Lipkin, Watt, Garth. After it became clear how to draw a segment, the next big problem was to describe all possible curves that could be the trajectories of one of the hinges of a linkage. The solution to this problem was King's theorem, which says that a set can be drawn if and only if it is either an ambient space or a semi-algebraic compact [16], [17]. The issues investigated by the author of this paper continue the exploration of previous tasks related to linkages, since they consider the possibilities of solving optimization problems using linkages, for example, finding the shortest network connecting a set of points in Euclidean space. The main result of this work describes the construction of a mechanism that builds a minimal parametric network in a Euclidean space of dimension $d\geqslant 2$. In the author's previous work, a proof of the existence of a linkages that builds a minimal Steiner network is given, and a variant of constructing such a mechanism is also proposed. Since the main task was to prove the existence of such a mechanism, without minimizing it. The described assembly method can obviously be optimized and the results obtained in this work allows us to do that.
Keywords: Steiner problem, minimal parametrical network, linkage, locally minimal network.
@article{CHEB_2022_23_2_a4,
     author = {M. Yu. Zhitnaya},
     title = {Modeling of minimal parametrical networks in euclidean spaces by means of linkages},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {74--87},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a4/}
}
TY  - JOUR
AU  - M. Yu. Zhitnaya
TI  - Modeling of minimal parametrical networks in euclidean spaces by means of linkages
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 74
EP  - 87
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a4/
LA  - ru
ID  - CHEB_2022_23_2_a4
ER  - 
%0 Journal Article
%A M. Yu. Zhitnaya
%T Modeling of minimal parametrical networks in euclidean spaces by means of linkages
%J Čebyševskij sbornik
%D 2022
%P 74-87
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a4/
%G ru
%F CHEB_2022_23_2_a4
M. Yu. Zhitnaya. Modeling of minimal parametrical networks in euclidean spaces by means of linkages. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 74-87. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a4/

[1] Sosinskii A.B., Dvumernye poverkhnosti i konfiguratsionnye prostranstva sharnirnykh mekhanizmov. Lektsiya pervaya, Letnyaya shkola «Sovremennaya matematika», Dubna, 2007 http://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=130

[2] Sosinskii A.B., Dvumernye poverkhnosti i konfiguratsionnye prostranstva sharnirnykh mekhanizmov. Lektsiya vtoraya, Letnyaya shkola «Sovremennaya matematika», Dubna, 2007 http://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=131

[3] Mekhanizmy P.L. Chebysheva, Rossiiskii institut im. V.A. Steklova Rossiiskoi akademii nauk, 2009–2021 https://tcheb.ru/ | MR

[4] Kovalev M.D., Geometricheskie voprosy kinematiki i statiki, URSS Lenand, M., 2019

[5] Kovalev M.D., Chto takoe sharnirnyi mekhanizm? I chto zhe dokazal Kempe?, Itogi nauki i tekhniki, seriya Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 179, 2020, 16–28 | DOI

[6] Oshemkov A.A., Popelenskii F.Yu., Tuzhilin A.A., Fomenko A.T., Shafarevich A.I., Kurs naglyadnoi geometrii i topologii., URSS, M., 2014, 360 pp.

[7] Zhitnaya M.Yu., “Modelirovanie optimalnykh setei s pomoschyu sharnirnykh mekhanizmov”, Fundament. i prikl. matem., 22:6 (2019), 95–122

[8] Tuzhilin A.A., Fomenko A.T., “Mnogoznachnye otobrazheniya, minimalnye poverkhnosti i mylnye plenki”, Vestn. Mosk. un-ta, 1986, no. 3, 3–12 | MR

[9] Hwang F.K., “Linear time algorithm for full steiner trees”, Operations Research Letters, 4:5 (1986), 235–237 | DOI | MR | Zbl

[10] Melzak Z.A., “On the problem of Steiner”, Canadian Mathematical Bulletin, 4:2 (1961), 143–148 | DOI | MR | Zbl

[11] Kempe A.B., How to draw a straight line: a lecture on linkages, Macmillan Co., 1871, 51 pp.

[12] Kapovich M., Millson J.J., “Universality theorems for configurations of planar linkages”, Topology, 41:6 (2002), 1051–1107 | DOI | MR | Zbl

[13] Ivanov A.O., Tuzhilin A.A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, USA, 1994, 432 pp. | MR | Zbl

[14] Gilbert E.N., Pollak H.O., “Steiner Minimal Trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[15] Abbott T.G., Generalizations of Kempe's Universality Theorem, Massachusetts Institute of Technology, Massachusetts, 2008, 86 pp.

[16] King H., Semiconfiguration spaces of planar linkages, arXiv: math/9810130

[17] H. King., Configuration spaces of linkages in $\mathbb{R}^n$, arXiv: math/9811138