Linear manifolds of projectors
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 42-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows that a linear manifold of matrices of the form: $Q=Q_{0}+\sum a_{i}P{}_{i}$, can consist of projectors only. It turns out that for this it is necessary and sufficient that $P_{i} =Q_{i}-Q_{0}$ and all the matrices $Q_{i}$ be projectors, moreover: $(Q_{i}-Q_{j})^{2}=0$ for any pair i and j. It is established that all projectors that make up this linear manifold have one rank and any pair $A, B$ of these projectors satisfies $(A-B)^{2}=0$. Several conditions were found equivalent to the fact that two projectors $A,B$ satisfy $(A-B)^{2}=0$, one of them in terms of the subspaces defining these projectors. Let $n$ be the order of the projectors $Q_{i}$, $r$ be their rank, then it is shown that the maximum number of linearly independent matrices $P_{i}=Q_{i}-Q_{0}$ such that the conditions $(Q_{i}-Q_{j})^{2}=0$ are satisfied is $r(n-r)$. Therefore, any projector of rank $r$ can be represented as the sum of an orthoprojector $Q_{0}$ and a linear combination of at most $r(n-r)$ projectors $Q_{i}$ so that $(Q_{i}-Q_{j})^{2}=0$, $i,j=0,1,\dots,r(n-r)$. The paper calculates the minimum distance between two projectors of ranks $k$ and $l - |k-l|^{1/2}$. The maximum distance between two orthoprojectors of the same rank $k$ is $(2k)^{1/2}$. It is established that the polynomial $h(p,q)=(p-q)^{2}$ plays a special role for the algebra $\mathcal {A}(p,q)$ generated by the projectors $p,q,I$. The polynomial $h$ generates the center of this algebra — the set of elements commuting with all elements of $\mathcal {A}(p,q)$.
Keywords: projector, linear manifold, linear subspace of matrices of bounded rank, block-triangular form pair of projectors, center of an algebra generated by two projectors.
@article{CHEB_2022_23_2_a2,
     author = {A. M. Vetoshkin},
     title = {Linear manifolds of projectors},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {42--55},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a2/}
}
TY  - JOUR
AU  - A. M. Vetoshkin
TI  - Linear manifolds of projectors
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 42
EP  - 55
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a2/
LA  - ru
ID  - CHEB_2022_23_2_a2
ER  - 
%0 Journal Article
%A A. M. Vetoshkin
%T Linear manifolds of projectors
%J Čebyševskij sbornik
%D 2022
%P 42-55
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a2/
%G ru
%F CHEB_2022_23_2_a2
A. M. Vetoshkin. Linear manifolds of projectors. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 42-55. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a2/

[1] Voevodin V.V., Entsiklopediya lineinoi algebry. Elektronnaya sistema LINEAL, BKhV-Peterburg, SPb., 2006, 544 pp. | MR

[2] Baksalary J.K., Baksalary O.M., “Idempotency of linear combinations of two idempotent matrices”, Linear Algebra Appl., 321 (2000), 3–7 | DOI | MR | Zbl

[3] Flanders H., “On spaces of linear transformations with bounded rank”, J. London Math. Soc., 37 (1962), 10–16 | DOI | MR | Zbl

[4] Prasolov V.V., Zadachi i teoremy lineinoi algebry, MTsPMO, M., 2015, 576 pp.

[5] Godunov S.K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997, 390 pp.

[6] Ikramov Kh.D., “Ob odnovremennoi privodimosti k blochno-treugolnomu vidu par kosykh proektorov”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 181–182 | MR | Zbl

[7] Ikramov Kh.D., “Odnovremennoe privedenie k blochno-treugolnomu vidu i teoremy o parakh kompleksnykh idempotent”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 979–982 | MR | Zbl

[8] Dzhordzh F., Ikramov Kh.D., “Zamechanie o kanonicheskoi forme pary ortoproektorov”, Zap. nauch. Seminarov POMI, 2004

[9] Ikramov Kh.D., “O kanonicheskoi forme proektorov otnositelno unitarnogo podobiya”, Zh. vychisl. matem. i matem. fiz., 36:3 (1996), 3–5 | MR | Zbl

[10] Ikramov Kh.D., “Kanonicheskaya forma kak sredstvo dokazatelstva svoistv proektorov”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1285–1290 | MR | Zbl

[11] Ikramov Kh.D., “Kvazidiagonaliziruemost kosykh proektorov kak chastnyi sluchai nekommutativnoi spektralnoi teoremy”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1123–1130 | MR | Zbl

[12] Ikramov Kh.D., “Kanonicheskie formy proektorov otnositelno unitarnogo podobiya i ikh prilozheniya”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1534–1539 | MR | Zbl

[13] Djokovic D. Z, “Unitary similarity of projectors”, Aequationes Mathematicae, 42 (1991), 220–224 | DOI | MR | Zbl

[14] Vetoshkin A.M., “Svoistva mnogochlenov ot dvukh proektorov”, Zh. vychisl. matem. i matem. fiz., 55:2 (2015), 189–192 | DOI | MR | Zbl

[15] Vetoshkin A.M., “Vsegda nevyrozhdennye mnogochleny ot dvukh proektorov”, Chebyshevskii sb., 18:1 (2017), 44–64 | DOI | MR | Zbl