Uniquely list colorability of complete tripartite graphs
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 170-178

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a list $L(v)$ for each vertex $v$, we say that the graph $G$ is $L$-colorable if there is a proper vertex coloring of $G$ where each vertex $v$ takes its color from $L(v)$. The graph is uniquely $k$-list colorable if there is a list assignment $L$ such that $|L(v)| = k$ for every vertex $v$ and the graph has exactly one $L$-coloring with these lists. If a graph $G$ is not uniquely $k$-list colorable, we also say that $G$ has property $M(k)$. The least integer $k$ such that $G$ has the property $M(k)$ is called the $m$-number of $G$, denoted by $m(G)$. In this paper, first we characterize about the property of the complete tripartite graphs when it is uniquely $k$-list colorable graphs, finally we shall prove that $m(K_{2,2,m})=m(K_{2,3,n})=m(K_{2,4,p})=m(K_{3,3,3})=4$ for every $m\ge 9,n\ge 5, p\ge 4$.
Keywords: Vertex coloring (coloring), list coloring, uniquely list colorable graph, complete $r$-partite graph.
@article{CHEB_2022_23_2_a10,
     author = {Le Xuan Hung},
     title = {Uniquely list colorability of complete tripartite graphs},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {170--178},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a10/}
}
TY  - JOUR
AU  - Le Xuan Hung
TI  - Uniquely list colorability of complete tripartite graphs
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 170
EP  - 178
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a10/
LA  - en
ID  - CHEB_2022_23_2_a10
ER  - 
%0 Journal Article
%A Le Xuan Hung
%T Uniquely list colorability of complete tripartite graphs
%J Čebyševskij sbornik
%D 2022
%P 170-178
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a10/
%G en
%F CHEB_2022_23_2_a10
Le Xuan Hung. Uniquely list colorability of complete tripartite graphs. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 170-178. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a10/