New estimates for the exceptional set of the sum of two primes from an arithmetic progression
Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 21-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the question of representing numbers as the sum of two primes from an arithmetic progression, that is, the binary Goldbach problem, when primes are taken from an arithmetic progression. New estimates are proved for the number of even natural numbers that are (possibly) not representable as a sum of two primes from an arithmetic progression and for a number representing a given natural number, as a sum of two primes from an arithmetic progression.
Keywords: The Dirichlet charakter, Dirichlet $L$-function, exceptional set, representation numbers,exceptional zero, exceptional nature, main member, remaining member.
@article{CHEB_2022_23_2_a1,
     author = {I. Allakov and A. Sh. Safarov},
     title = {New estimates for the exceptional set of the sum of two primes from an arithmetic progression},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {21--41},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a1/}
}
TY  - JOUR
AU  - I. Allakov
AU  - A. Sh. Safarov
TI  - New estimates for the exceptional set of the sum of two primes from an arithmetic progression
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 21
EP  - 41
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a1/
LA  - ru
ID  - CHEB_2022_23_2_a1
ER  - 
%0 Journal Article
%A I. Allakov
%A A. Sh. Safarov
%T New estimates for the exceptional set of the sum of two primes from an arithmetic progression
%J Čebyševskij sbornik
%D 2022
%P 21-41
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a1/
%G ru
%F CHEB_2022_23_2_a1
I. Allakov; A. Sh. Safarov. New estimates for the exceptional set of the sum of two primes from an arithmetic progression. Čebyševskij sbornik, Tome 23 (2022) no. 2, pp. 21-41. http://geodesic.mathdoc.fr/item/CHEB_2022_23_2_a1/