Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_1_a9, author = {M. V. Melikyan}, title = {Large system of oscillators with ultralocal stochastic stationary external field influence}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {130--141}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a9/} }
M. V. Melikyan. Large system of oscillators with ultralocal stochastic stationary external field influence. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a9/
[1] Lykov A., Malyshev V., “From the $N$-body problem to Euler equations”, Russian Journal of Mathematical Physics, 24:1 (2017), 79–95 | DOI | MR | Zbl
[2] Lykov A. A., Malyshev V. A., “Harmonic Chain with Weak Dissipation”, Markov Processes and Related Fields, 18 (2012), 1–10 | MR
[3] Lykov A. A., Malyshev V. A., Chubarikov V. N., “Regulyarnye kontinualnye sistemy tochechnykh chastits. I: sistemy bez vzaimodeistviya”, Chebyshevskii sbornik, 17:3 (2016), 148–165 | DOI | MR | Zbl
[4] Lykov A. A., Malyshev V. A., “Convergence to Gibbs Equilibrium — Unveiling the Mystery”, Markov Processes and Related Fields, 19 (2013), 643–666 | MR | Zbl
[5] Lykov A. A., Malyshev V. A., Melikian M. V., “Phase diagram for one-way traffic flow with local control”, Physica A: Statistical Mechanics and its Applications, 486 (2017), 849–866 | DOI | MR | Zbl
[6] Lykov A., Melikian M., “Long time behavior of infinite harmonic chain with $l_{2}$ initial conditions”, Markov Processes and Related Fields, 26:2 (2020), 189–212 | MR | Zbl
[7] Lykov A. A., Malyshev V. A., Melikyan M. V., “Rezonans v mnogokomponentnykh lineinykh sistemakh”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2021, no. 3, 74–79 | MR | Zbl
[8] Dobrushin R. L., Fritz J., “Non-Equilibrium Dynamics of One-dimensional Infinite Particle Systems with a Hard-Core Interaction”, Commun. math. Phys., 55 (1977), 275–292 | DOI | MR | Zbl
[9] Boldrighini C., Pellegrinotti A., Triolo L., “Convergence to Stationary States for Infinite Harmonic Systems”, Journal of Statistical Physics, 30:1 (1983) | DOI | MR
[10] Boldrighini C., Dobrushin R. L., Sukhov Yu. M., “One-Dimensional Hard Rod Caricature of Hydrodynamics”, Journal of Statistical Physics, 31:3 (1983), 123–155 | DOI | MR
[11] Dobrushin R. L. , Pellegrinotti A., Suhov Yu. M., Triolo L., “One-Dimensional Harmonic Lattice Caricature of Hydrodynamics”, Journal of Statistical Physics, 43:3/4 (1986) | MR | Zbl
[12] Bernardin C., Huveneers F. , Olla S., “Hydrodynamic Limit for a Disordered Harmonic Chain”, Commun. Math. Phys., 365 (2019), 215 | DOI | MR | Zbl
[13] Dyson F. J., “The dynamics of a disordered linear chain”, Phys. Rev., 92:6 (1953), 1331–1338 | DOI | MR | Zbl
[14] Matsuda H., Ishii K., “Localization of normal modes and energy transport in the disordered harmonic chain”, Prog. Theor. Phys. Suppl., 45 (1970), 56–88 | DOI | MR
[15] O'Connor A. J., Lebowitz J. L., “Heat conduction and sound transmission in isotopically disordered harmonic crystals”, J. Math. Phys., 15 (1974), 692–703 | DOI | MR
[16] Casher A., Lebowitz J. L., “Heat flow in regular and disordered harmonic chains”, J. Math. Phys., 12:8 (1971), 1701–1711 | DOI
[17] Dudnikova T. V., “Behavior for Large Time of a Two-Component Chain of Harmonic Oscillators”, Russian Journal of Mathematical Physics, 25:4 (2018), 470–491 | DOI | MR | Zbl
[18] Dudnikova T., “Long-time asymptotics of solutions to a hamiltonian system on a lattice”, Journal of Mathematical Sciences, 219:1 (2016), 69–85 | DOI | MR | Zbl
[19] Dudnikova T., Komech A., Spohn H., “On the convergence to statistical equilibrium for harmonic crystals”, J. Math. Phys., 44:6 (2003), 2596–2620 | DOI | MR | Zbl
[20] Lykov A. A., “Energy Growth of Infinite Harmonic Chain under Microscopic Random Influence”, Markov Processes and Related Fields, 26 (2020), 287–304 | MR | Zbl
[21] Kuzkin V. A., Krivtsov A. M., “Energy transfer to a harmonic chain under kinematic and force loadings: Exact and asymptotic solutions”, J. Micromech. and Mol. Phys., 3 (2018), 1–2 | DOI
[22] Hemmen J., “Dynamics and ergodicity of the infinite harmonic crystal”, Physics Reports, 65:2 (1980), 43–149 | DOI | MR
[23] Fox R., “Long-time tails and diffusion”, Phys. Rev. A, 27:6 (1983), 3216–3233 | DOI | MR
[24] Florencio J., Lee H., “Exact time evolution of a classical harmonic-oscillator chain”, Phys. Rev. A, 31:5 (1985), 3221–3236 | DOI | MR
[25] Lanford O., Lebowitz J., “Time evolution and ergodic properties of harmonic systems”, Dynamical Systems, Theory and Applications, Lect. Notes Phys., 38, ed. J. Moser, Springer, Berlin–Heidelberg, 1975, 144–177 | DOI | MR
[26] Bogolyubov N. N., On Some Statistical Methods in Mathematical Physics, Ac. Sci. USSR, Kiev, 1945 | MR
[27] Spohn H., Lebowitz J., “Stationary non-equilibrium states of infinite harmonic systems”, Commun. Math. Phys., 54 (1977), 97–120 | DOI | MR
[28] Filippov A. F., Vvedenie v teoriyu differentsialnykh uravnenii, KomKniga, M., 2007