The consumption function in the Ramsey--Kass--Koopmans economic growth model in the case of a stationary saving function
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 118-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dependence of the functions of capital (resource) and consumption in the Ramsey-Kass-Koopmans economic model in the case when saving is an identical constant. The system of differential equations describing the evolution of the economic model under consideration is solved in quadratures under the assumptions made. Upper estimates of the consumption function are found based on the obtained solution.
Keywords: mathematical model, Ramsey–Kass–Koopmans problem, competitive households, function of capital, consumption.
@article{CHEB_2022_23_1_a8,
     author = {A. I. Kozko and L. M. Luzhina and A. Yu. Popov and V. G. Chirskii},
     title = {The consumption function in the {Ramsey--Kass--Koopmans} economic growth model in the case of a stationary saving function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {118--129},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a8/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - L. M. Luzhina
AU  - A. Yu. Popov
AU  - V. G. Chirskii
TI  - The consumption function in the Ramsey--Kass--Koopmans economic growth model in the case of a stationary saving function
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 118
EP  - 129
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a8/
LA  - ru
ID  - CHEB_2022_23_1_a8
ER  - 
%0 Journal Article
%A A. I. Kozko
%A L. M. Luzhina
%A A. Yu. Popov
%A V. G. Chirskii
%T The consumption function in the Ramsey--Kass--Koopmans economic growth model in the case of a stationary saving function
%J Čebyševskij sbornik
%D 2022
%P 118-129
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a8/
%G ru
%F CHEB_2022_23_1_a8
A. I. Kozko; L. M. Luzhina; A. Yu. Popov; V. G. Chirskii. The consumption function in the Ramsey--Kass--Koopmans economic growth model in the case of a stationary saving function. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 118-129. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a8/

[1] Acemoglu Daron, The Neoclassical Growth Model. Introduction to Modern Economic Growth, Princeton University Press, Princeton, 2009, 287–326

[2] Bénassy Jean-Pascal, The Ramsey Model. Macroeconomic Theory, Oxford University Press, New York, 2011, 145–160 | DOI

[3] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Ogranicheniya na znacheniya funktsii potrebleniya v modeli ekonomicheskogo rosta Ramseya - Kassa - Kupmansa v sluchae statsionarnoi funktsii sberezheniya”, Chebyshevskii sbornik, 22:2 (2021), 501–509 | DOI | MR | Zbl

[4] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Optimalnaya eksponenta v zadache Ramseya-Kassa-Kupmansa s logarifmicheskoi funktsiei poleznosti”, Chebyshevskii sbornik, 20:4 (2019), 197–207 | DOI | MR | Zbl

[5] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “O zadache Ramseya — Kassa — Kupmansa dlya potrebitelskogo vybora”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 182, 2020, 39–44 | DOI

[6] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Model zadachi Ramseya — Kassa — Kupmansa”, Klassicheskaya i sovremennaya geometriya, materialy mezhdunarodnoi konferentsii, posvyaschennoi 100-letiyu so dnya rozhdeniya V. T. Bazyleva, ed. A. V. Tsarev, Izdatelstvo Moskovskii pedagogicheskii gosudarstvennyi universitet, M., 2019, 87–88

[7] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Otsenka neobkhodimogo nachalnogo ekonomicheskogo resursa v zadache Ramseya-Kassa-Kupmansa”, Chebyshevskii sbornik, 20:4 (2019), 188–196 | DOI | MR | Zbl

[8] Rahul, Giri, Growth Model with Endogenous Savings: Ramsey-Cass-Koopmans Model, 2018 http://ciep.itam.mx/r̃ahul.giri/uploads/1/1/3/6/113608/ramsey-cass-koopmans_model.pdf

[9] Barro R. Dzh., Sala-i-Martin Kh., Ekonomicheskii rost, BINOM. Laboratoriya znanii, M., 2010

[10] Groth Christian, Koch Karl-Josef, Steger Thomas Michael, Rethinking the Concept of Long-Run Economic Growth, CESifo Working Paper Series No1701, April 2006 https://ssrn.com/abstract=899250

[11] Groth Christian, Koch Karl-Josef, Steger Thomas Michael, “When Economic Growth is Less than Exponential”, Economic Theory, 44:2 (2010) | DOI | MR | Zbl

[12] Groth C., Chapter 10: The Ramsey Model, 2010 https://web.econ.ku.dk/okocg/VV/VV-2010/Lecture

[13] Romer D., Advanced Macroeconomics, 3rd ed., McGraw-Hill/Irwin, New York, 2006, 651 pp.

[14] Robert J. Barro, “Ramsey Meets Laibson in the Neoclassical Growth Model”, The Quarterly Journal of Economics, Oxford University Press, 114:4 (1999), 1125–1152 | Zbl

[15] Paul H. Douglas, In the Fullness of Time: The Memoirs of Paul H. Douglas, Harcourt Brace Jovanovich, New York, 1972

[16] King Robert G., and Sergio Rebelo, “Transitional Dynamics and Economic Growth in the Neoclassical Model”, American Economic Review, 83, September (1993), 908–931

[17] Pierre-Olivier Gourinchas, UC Berkeley Fall 2014 https://eml.berkeley.edu/w̃ebfac/gourinchas/e202a_f14/Notes_Ramsey_Cass_Koopmans_pog.pdf

[18] Akaev A.A., Sadovnichii V.A., “K voprosu o vybore matematicheskikh modelei dlya opisaniya dinamiki tsifrovoi ekonomiki”, Differentsialnye uravneniya, 55:5 (2019), 743–752 | DOI | MR | Zbl

[19] Gómez M. A., “Economic growth and factor substitution with elastic labor supply”, Math. Social Sci., 94 (2018), 49–57 | DOI | MR | Zbl

[20] Gómez M. A., “Factor substitution and convergence speed in the neoclassical model with elastic labor supply”, Economics Letters, 172 (2018), 89–92 | DOI | MR | Zbl