Geometry of integral manifolds of contact distribution
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 106-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, various classes of almost contact metric structures are considered under the assumption that their contact distribution is completely integrable. An analytical criterion for the completely integrability of the contact distribution of an almost contact metric manifold is obtained. It is found which almost Hermitian structures are induced on the integral manifolds of the contact distribution of some almost contact metric manifolds. In particular, it is proved that an almost Hermitian structure induced on integral submanifolds of maximum dimension of the first fundamental distribution of a Kenmotsu manifold is a Kähler structure. An almost Hermitian structure induced on integral manifolds of maximum dimension of a completely integrable first fundamental distribution of a normal manifold is a Hermitian structure. We show that a nearly cosymplectic structure with an involutive first fundamental distribution is the most closely cosymplectic one and approximately Kähler structure is induced on its integral submanifolds of the maximum dimension of a completely integrable contact distribution. It is also proved that the contact distribution of an inquasi-Sasakian manifold is integrable only in case of this manifold is cosymplectic. Kähler structure is induced on the maximal integral manifolds of the contact distribution of a cosymplectic manifold. If $M$ is a $lcQS$-manifold with an involutive first fundamental distribution, then the structure of the class $W_4$ of almost Hermitian structures in the Gray-Hervella classification is induced on integral manifolds of the maximum dimension of its contact distribution. It is Kähler if and only if $grad \ \sigma \subset M$, where $\sigma$ is an arbitrary smooth function on $M$ of corresponding conformal transformation.
Keywords: completely integrable distribution, almost contact metric structure, almost Hermitian structure, contact distribution.
@article{CHEB_2022_23_1_a7,
     author = {V. F. Kirichenko and O. E. Arseneva and E. V. Surovceva},
     title = {Geometry of integral manifolds of contact distribution},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {106--117},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - O. E. Arseneva
AU  - E. V. Surovceva
TI  - Geometry of integral manifolds of contact distribution
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 106
EP  - 117
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/
LA  - en
ID  - CHEB_2022_23_1_a7
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A O. E. Arseneva
%A E. V. Surovceva
%T Geometry of integral manifolds of contact distribution
%J Čebyševskij sbornik
%D 2022
%P 106-117
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/
%G en
%F CHEB_2022_23_1_a7
V. F. Kirichenko; O. E. Arseneva; E. V. Surovceva. Geometry of integral manifolds of contact distribution. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 106-117. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/

[1] Gray J. W., “Contact structures”, Abst. Short communs Internat. Congress Math. in Edinburgh, Univ. Edinburgh, Edinburgh, 1958, 113 pp.

[2] Chern S. S., “Pseudo-groups continus infinis”, Colloq. Internat. Centre Nat. Rech. Scient. Strasbourg, 52 (1953), 119–136 | MR | Zbl

[3] Boothby W., “On contact manifolds”, Ann. Math., 68:3 (1958), 721–734 | DOI | MR | Zbl

[4] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tohoku Math. J., 2 (1960), 459–476 | MR | Zbl

[5] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, 343 pp. | DOI | MR

[6] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Izdanie vtoroe, dopolnennoe, «Pechatnyi dom», Odessa, 2013, 458 pp.

[7] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, per. s angl., Mir, M., 1987, 304 pp. | MR

[8] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matematicheskie zametki, 8:193 (2002), 1173–1201 | Zbl

[9] Kirichenko V. F., “O geometrii mnogoobrazii Kenmotsu”, Doklady akademii nauk, 380:5 (2002), 585–587

[10] Sasaki S., Hatakeyama Y., “On differentiable manifolds with certain structures which are closely related to almost contact structure II”, Tohoku Math. J., 13 (1961), 281–294 | MR | Zbl

[11] Blair D. E., Showers D. K., “Almost contact manifolds with Killing structure tensors II”, J. Diff. Geom., 9 (1974), 577–582 | DOI | MR | Zbl

[12] Blair D. E., “Almost contact manifolds with Killing structure tensors”, Pacific Journal of Mathematics, 39:2 (1971), 285–292 | DOI | MR | Zbl

[13] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 18, VINITI AN SSSR, M., 1986, 25–70

[14] Blair D. E., “The theory of quasi-Sasakian structures”, J. Diff. Geom., 1 (1967), 333–345 | MR

[15] Kirichenko V. F., Baklashova R. S., “Geometriya kontaktnoi formy Li i kontaktnyi analog teoremy Ikuty”, Matematicheskie zametki, 82:3 (2007), 347–360 | DOI | MR | Zbl

[16] Kirichenko V. F., Uskorev I. V., “Invarianty konformnogo preobrazovaniya pochti kontaktnykh metricheskikh struktur”, Matematicheskie zametki, 84:6 (2008), 838–850 | DOI | Zbl