Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_1_a7, author = {V. F. Kirichenko and O. E. Arseneva and E. V. Surovceva}, title = {Geometry of integral manifolds of contact distribution}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {106--117}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/} }
TY - JOUR AU - V. F. Kirichenko AU - O. E. Arseneva AU - E. V. Surovceva TI - Geometry of integral manifolds of contact distribution JO - Čebyševskij sbornik PY - 2022 SP - 106 EP - 117 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/ LA - en ID - CHEB_2022_23_1_a7 ER -
V. F. Kirichenko; O. E. Arseneva; E. V. Surovceva. Geometry of integral manifolds of contact distribution. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 106-117. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a7/
[1] Gray J. W., “Contact structures”, Abst. Short communs Internat. Congress Math. in Edinburgh, Univ. Edinburgh, Edinburgh, 1958, 113 pp.
[2] Chern S. S., “Pseudo-groups continus infinis”, Colloq. Internat. Centre Nat. Rech. Scient. Strasbourg, 52 (1953), 119–136 | MR | Zbl
[3] Boothby W., “On contact manifolds”, Ann. Math., 68:3 (1958), 721–734 | DOI | MR | Zbl
[4] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tohoku Math. J., 2 (1960), 459–476 | MR | Zbl
[5] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, 343 pp. | DOI | MR
[6] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Izdanie vtoroe, dopolnennoe, «Pechatnyi dom», Odessa, 2013, 458 pp.
[7] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, per. s angl., Mir, M., 1987, 304 pp. | MR
[8] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matematicheskie zametki, 8:193 (2002), 1173–1201 | Zbl
[9] Kirichenko V. F., “O geometrii mnogoobrazii Kenmotsu”, Doklady akademii nauk, 380:5 (2002), 585–587
[10] Sasaki S., Hatakeyama Y., “On differentiable manifolds with certain structures which are closely related to almost contact structure II”, Tohoku Math. J., 13 (1961), 281–294 | MR | Zbl
[11] Blair D. E., Showers D. K., “Almost contact manifolds with Killing structure tensors II”, J. Diff. Geom., 9 (1974), 577–582 | DOI | MR | Zbl
[12] Blair D. E., “Almost contact manifolds with Killing structure tensors”, Pacific Journal of Mathematics, 39:2 (1971), 285–292 | DOI | MR | Zbl
[13] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 18, VINITI AN SSSR, M., 1986, 25–70
[14] Blair D. E., “The theory of quasi-Sasakian structures”, J. Diff. Geom., 1 (1967), 333–345 | MR
[15] Kirichenko V. F., Baklashova R. S., “Geometriya kontaktnoi formy Li i kontaktnyi analog teoremy Ikuty”, Matematicheskie zametki, 82:3 (2007), 347–360 | DOI | MR | Zbl
[16] Kirichenko V. F., Uskorev I. V., “Invarianty konformnogo preobrazovaniya pochti kontaktnykh metricheskikh struktur”, Matematicheskie zametki, 84:6 (2008), 838–850 | DOI | Zbl