Integer polynomials and Minkowski's theorem on linear forms
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper Minkowski's theorem on linear forms [1] is applied to polynomials with integer coefficients \begin{align} P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \end{align} with degree $degP = n$ and height $H(P)=\max_{0 \le i \le n} |a_i|$. Then, for any $x \in [0,1)$ and a natural number $Q > 1$, we obtain the inequality \begin{align} |P(x)| c_1(n) Q ^{-n} \end{align} for some $P(x), H(P) \leq Q$. Inequality (4) means that the entire interval $[0,1)$ can be covered by intervals $I_i, i = 1, 2, \ldots$ at all points of which inequality (4) is true. An answer is given to the question about the size of the $I_i$ intervals. The main result of this paper is proof of the following statement. For any $v$, $0 \leq v \frac{n+1}{3}$, there is an interval $J_k$, $k = 1, \ldots, K$, such that for all $x \in J_k$, the inequality (4) holds and, moreover, \begin{align*} c_2 Q^{-n-1+v} \mu J_k c_3 Q^{-n-1+v}. \end{align*}
Keywords: diophantine approximation, Lebesgue measure, Minkowski's theorem.
@article{CHEB_2022_23_1_a4,
     author = {V. I. Bernik and I. A. Korlyukova and A. S. Kudin and A. V. Titova},
     title = {Integer polynomials and {Minkowski's} theorem on linear forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - I. A. Korlyukova
AU  - A. S. Kudin
AU  - A. V. Titova
TI  - Integer polynomials and Minkowski's theorem on linear forms
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 45
EP  - 52
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/
LA  - ru
ID  - CHEB_2022_23_1_a4
ER  - 
%0 Journal Article
%A V. I. Bernik
%A I. A. Korlyukova
%A A. S. Kudin
%A A. V. Titova
%T Integer polynomials and Minkowski's theorem on linear forms
%J Čebyševskij sbornik
%D 2022
%P 45-52
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/
%G ru
%F CHEB_2022_23_1_a4
V. I. Bernik; I. A. Korlyukova; A. S. Kudin; A. V. Titova. Integer polynomials and Minkowski's theorem on linear forms. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/

[1] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo Inostr. Liter., M., 1961, 213 pp.

[2] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i Tekhnika, Mn., 1967, 184 pp. | MR

[3] Kemesh O. N., Panteleeva Zh. I., Titova A. V., “Tochnye otsenki mery malykh znachenii tselochislennykh polinomov”, «Vesnik» Mogilevskogo gosudarstvennogo universiteta im. A.A. Kuleshova, 57:1 (2021), 81–86

[4] Kudin A. S., Panteleeva Zh. I., Titova A. V., “Neuluchshaemye otsenki mery Khaara mnozhestv p-adicheskikh chisel s malymi znacheniyami tselochislennykh polinomov”, «Vesnik» Mogilevskogo gosudarstvennogo universiteta im. A.A. Kuleshova (to appear)

[5] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90:2 (1999), 97–112 | DOI | MR | Zbl

[6] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compositio Mathematica, 146:5 (2010), 1165–1179 | DOI | MR | Zbl

[7] Beresnevich V., Bernik V., Götze F., “Integral polynomials with small discriminants and resultants”, Advances in Mathematics, 298 (2016), 393–412 | DOI | MR | Zbl

[8] Beresnevich V., “Rational points near manifolds and metric Diophantine approximation”, Annals of Mathematics, 175:1 (2012), 187–235 | DOI | MR | Zbl

[9] Bernik V. I., “Application of Hausdorff Dimension in the theory of Diophantine Approximation”, Acta Arithmetica, 42:3 (1983), 219–253 | DOI | MR | Zbl

[10] Mahler K., “Uber das Mass der Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl

[11] Kubilyus I. P., “O primenenii metoda akad. Vinogradova k resheniyu odnoi zadachi metricheskoi teorii chisel”, DAN SSSR, 67 (1949), 783–786 | MR | Zbl

[12] Schmidt WM., “Metrische Sätze über simultane Approximation abhängiger Größen”, Monatshefte für Mathematik, 68:2 (1964), 154–166 | DOI | MR | Zbl

[13] Sprindzhuk V. G., “Dokazatelstvo gipotezy Malera o mere mnozhestva S-chisel”, Izv. AN SSSR, 29:2 (1965), 379–436 | MR | Zbl

[14] Volkmann B., “Ein metrischer Beitrag über Mahlerschen $S-$Zahlen, I”, J. reine und angew. Math., 203:3–4 (1960), 154–156 | DOI | MR | Zbl

[15] Baker A., “On a Theorem of Sprindzuk”, Proc. R. Soc. Lond. A, 292:1428 (1966), 92–104 | DOI | Zbl

[16] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967, 181 pp. | MR

[17] Khintchine A., “Einige sätze über kettenbrüche, mit anwendungen auf die theorie der Diophantischen approximationen”, Mathematische Annalen, 92:1–2 (1924), 115–125 | DOI | MR

[18] Bernik V. I., “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53:1 (1989–1990), 17–28 | DOI | MR | Zbl

[19] Beresnevich V., “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 94:1–2 (2002), 99–130 | DOI | MR | Zbl

[20] Bernik V., Kleinbock D., Margulis G., “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 9 (2001), 453–486 | DOI | MR | Zbl

[21] Beresnevich V., Bernik V., Kleinbock D., Margulis G., “Metric Diophantine approximation: The Khintchine-Groshev theorem for nondegenerate manifolds”, Moscow Mathematical Journal, 2:2 (2002), 203–225 | DOI | MR | Zbl

[22] Bernik V, Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izvestiya: Mathematics, 79:1 (2015), 18–39 | DOI | MR | Zbl