Integer polynomials and Minkowski's theorem on linear forms
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 45-52
Voir la notice de l'article provenant de la source Math-Net.Ru
In paper Minkowski's theorem on linear forms [1] is applied to polynomials with integer coefficients \begin{align} P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \end{align} with degree $degP = n$ and height $H(P)=\max_{0 \le i \le n} |a_i|$. Then, for any $x \in [0,1)$ and a natural number $Q > 1$, we obtain the inequality \begin{align} |P(x)| c_1(n) Q ^{-n} \end{align} for some $P(x), H(P) \leq Q$. Inequality (4) means that the entire interval $[0,1)$ can be covered by intervals $I_i, i = 1, 2, \ldots$ at all points of which inequality (4) is true. An answer is given to the question about the size of the $I_i$ intervals. The main result of this paper is proof of the following statement.
For any $v$, $0 \leq v \frac{n+1}{3}$, there is an interval $J_k$, $k = 1, \ldots, K$, such that for all $x \in J_k$, the inequality (4) holds and, moreover, \begin{align*} c_2 Q^{-n-1+v} \mu J_k c_3 Q^{-n-1+v}. \end{align*}
Keywords:
diophantine approximation, Lebesgue measure, Minkowski's theorem.
@article{CHEB_2022_23_1_a4,
author = {V. I. Bernik and I. A. Korlyukova and A. S. Kudin and A. V. Titova},
title = {Integer polynomials and {Minkowski's} theorem on linear forms},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {45--52},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/}
}
TY - JOUR AU - V. I. Bernik AU - I. A. Korlyukova AU - A. S. Kudin AU - A. V. Titova TI - Integer polynomials and Minkowski's theorem on linear forms JO - Čebyševskij sbornik PY - 2022 SP - 45 EP - 52 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/ LA - ru ID - CHEB_2022_23_1_a4 ER -
V. I. Bernik; I. A. Korlyukova; A. S. Kudin; A. V. Titova. Integer polynomials and Minkowski's theorem on linear forms. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/