Integer polynomials and Minkowski's theorem on linear forms
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 45-52

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper Minkowski's theorem on linear forms [1] is applied to polynomials with integer coefficients \begin{align} P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \end{align} with degree $degP = n$ and height $H(P)=\max_{0 \le i \le n} |a_i|$. Then, for any $x \in [0,1)$ and a natural number $Q > 1$, we obtain the inequality \begin{align} |P(x)| c_1(n) Q ^{-n} \end{align} for some $P(x), H(P) \leq Q$. Inequality (4) means that the entire interval $[0,1)$ can be covered by intervals $I_i, i = 1, 2, \ldots$ at all points of which inequality (4) is true. An answer is given to the question about the size of the $I_i$ intervals. The main result of this paper is proof of the following statement. For any $v$, $0 \leq v \frac{n+1}{3}$, there is an interval $J_k$, $k = 1, \ldots, K$, such that for all $x \in J_k$, the inequality (4) holds and, moreover, \begin{align*} c_2 Q^{-n-1+v} \mu J_k c_3 Q^{-n-1+v}. \end{align*}
Keywords: diophantine approximation, Lebesgue measure, Minkowski's theorem.
@article{CHEB_2022_23_1_a4,
     author = {V. I. Bernik and I. A. Korlyukova and A. S. Kudin and A. V. Titova},
     title = {Integer polynomials and {Minkowski's} theorem on linear forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - I. A. Korlyukova
AU  - A. S. Kudin
AU  - A. V. Titova
TI  - Integer polynomials and Minkowski's theorem on linear forms
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 45
EP  - 52
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/
LA  - ru
ID  - CHEB_2022_23_1_a4
ER  - 
%0 Journal Article
%A V. I. Bernik
%A I. A. Korlyukova
%A A. S. Kudin
%A A. V. Titova
%T Integer polynomials and Minkowski's theorem on linear forms
%J Čebyševskij sbornik
%D 2022
%P 45-52
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/
%G ru
%F CHEB_2022_23_1_a4
V. I. Bernik; I. A. Korlyukova; A. S. Kudin; A. V. Titova. Integer polynomials and Minkowski's theorem on linear forms. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a4/