On the geometry of generalized almost quaternionic manifolds of vertical type
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generalized almost quaternionic manifolds of vertical type. Examples of this type of manifolds are given. It is proved that on a generalized almost quaternionic manifold there always exists an almost $\alpha$-quaternionic connection, which in the main bundle induces a metric connection. The criterion of the auto-duality of the projected vertical $2$-form on an almost $\alpha$-quaternion manifold is obtained. The components of the structural endomorphism on the space of the $G$-structure are obtained. The answer to the question is obtained: when does the Riemann-Christoffel endomorphism preserve the Kähler module of a variety. It is proved that the Riemann-Christoffel Hermitian endomorphism of an almost $\alpha$-quaternionic variety of vertical type preserves the Kähler module of a variety if and only if the structural sheaf of this variety is Einstein. Hence, as a consequence, we obtain that a four-dimensional manifold with a Riemannian or neutral pseudo-Riemannian metric is an Einstein manifold if and only if its module of auto-dual forms is invariant with respect to the Riemann-Christoffel endomorphism. The resulting corollary shows that the previous result is a broad generalization of the Atiyah-Hitchin-Singer theorem, which gives the Einstein criterion for 4-dimensional Riemannian manifolds in terms of auto-dual forms, since the result generalizes this theorem to the case of a neutral pseudo-Riemannian metric. On the other hand, this result is closely related to the well-known result of Berger, who clarifies it in the special case of quaternionic-Kähler manifolds: if a variety $M$ is quaternionic-Koehler, then its Riemann connectivity (and not just the Riemann-Christoffel operator) preserves the Koehler modulus of the variety. In this case, $M$ is an Einstein manifold.
Keywords: algebra of generalized quaternions, generalized almost quaternionic structure, quaternionic-Kaehler manifold, Einstein manifold.
@article{CHEB_2022_23_1_a3,
     author = {O. E. Arsenyeva},
     title = {On the geometry of generalized almost quaternionic manifolds of vertical type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a3/}
}
TY  - JOUR
AU  - O. E. Arsenyeva
TI  - On the geometry of generalized almost quaternionic manifolds of vertical type
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 33
EP  - 44
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a3/
LA  - ru
ID  - CHEB_2022_23_1_a3
ER  - 
%0 Journal Article
%A O. E. Arsenyeva
%T On the geometry of generalized almost quaternionic manifolds of vertical type
%J Čebyševskij sbornik
%D 2022
%P 33-44
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a3/
%G ru
%F CHEB_2022_23_1_a3
O. E. Arsenyeva. On the geometry of generalized almost quaternionic manifolds of vertical type. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a3/

[1] Atiyah M. F., Hitchin N. J., Singer M., “Self-duality in four-dimensional Reimannian geometry”, Proc. Roy. London, 362:1711 (1978), 425–461 | MR | Zbl

[2] Berger M., “Remarques sur le groupe d'holonomie des varietes Riemannienes”, C. R. Acad. Sci. Paris, 262 (1996), 316–318 | MR

[3] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978, 431 pp. | MR

[4] Besse A., Mnogoobraziya Einshteina, v. 2, Mir, M., 1990, 703 pp.