On construction of multidimensional periodic wavelet frames
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 21-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Multidimensional periodic wavelet systems with matrix dilation in the framework of periodic multiresolution analyses are studied. In this work we use notion of a periodic multiresolution analysis, the most general definition of which was given by Maksimenko and M. Skopina in [25]. An algorithmic method of constructing multidimensional periodic dual wavelet frames from a suitable set of Fourier coefficients of one function is provided. This function is used as the first function in a scaling sequence that forms two periodic multiresolution analyses, which are used to construct wavelet systems. Conditions that the initial function has to satisfy are presented in terms of a certain rate of decay of its Fourier coefficients, and also mutual arrangement of zero and non-zero coefficients.
Keywords: wavelet function, periodic multiresolution analysis, wavelet frame, Bessel system, dual frames.
@article{CHEB_2022_23_1_a2,
     author = {P. A. Andrianov},
     title = {On construction of multidimensional periodic wavelet frames},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/}
}
TY  - JOUR
AU  - P. A. Andrianov
TI  - On construction of multidimensional periodic wavelet frames
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 21
EP  - 32
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/
LA  - en
ID  - CHEB_2022_23_1_a2
ER  - 
%0 Journal Article
%A P. A. Andrianov
%T On construction of multidimensional periodic wavelet frames
%J Čebyševskij sbornik
%D 2022
%P 21-32
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/
%G en
%F CHEB_2022_23_1_a2
P. A. Andrianov. On construction of multidimensional periodic wavelet frames. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/