On construction of multidimensional periodic wavelet frames
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multidimensional periodic wavelet systems with matrix dilation in the framework of periodic multiresolution analyses are studied. In this work we use notion of a periodic multiresolution analysis, the most general definition of which was given by Maksimenko and M. Skopina in [25]. An algorithmic method of constructing multidimensional periodic dual wavelet frames from a suitable set of Fourier coefficients of one function is provided. This function is used as the first function in a scaling sequence that forms two periodic multiresolution analyses, which are used to construct wavelet systems. Conditions that the initial function has to satisfy are presented in terms of a certain rate of decay of its Fourier coefficients, and also mutual arrangement of zero and non-zero coefficients.
Keywords: wavelet function, periodic multiresolution analysis, wavelet frame, Bessel system, dual frames.
@article{CHEB_2022_23_1_a2,
     author = {P. A. Andrianov},
     title = {On construction of multidimensional periodic wavelet frames},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/}
}
TY  - JOUR
AU  - P. A. Andrianov
TI  - On construction of multidimensional periodic wavelet frames
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 21
EP  - 32
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/
LA  - en
ID  - CHEB_2022_23_1_a2
ER  - 
%0 Journal Article
%A P. A. Andrianov
%T On construction of multidimensional periodic wavelet frames
%J Čebyševskij sbornik
%D 2022
%P 21-32
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/
%G en
%F CHEB_2022_23_1_a2
P. A. Andrianov. On construction of multidimensional periodic wavelet frames. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a2/

[1] P. A. Andrianov, “Sufficient conditions for a multidimensional system of periodic wavelets to be a frame”, Zap. Nauchn. Sem. POMI, 480, 2019, 48–61 (Russian)

[2] N. D. Atreas, “Characterization of dual multiwavelet frames of periodic functions”, International Journal of Wavelets, Multiresolution and Information Processing, 14:03 (2002), 1650012 | DOI | MR

[3] C. K. Chui, H. N. Mhaskar, “On trigonometric wavelets”, Constr. Approx., 9:2–3 (1993), 167–190 | DOI | MR | Zbl

[4] C. K. Chui, J. Z. Wang, “A general framework of compact supported splines and wavelets”, J. Approx. Theory, 71 (1992), 263–304 | DOI | MR | Zbl

[5] I. Daubechies, B. Han, A. Ron, Z. Shen, “Framelets: MRA-based constructions of wavelet frames”, ACHA, 14:1 (2003), 1–46 | MR | Zbl

[6] I. Daubechies, Ten lectures on Wavelets, CBMS-NSR Series in Appl. Math., SIAM, 1992 | MR | Zbl

[7] S. S. Goh, B. Han, Z. Shen, “Tight periodic wavelet frames and approximation orders”, ACHA, 31:2 (2011), 228–248 | MR | Zbl

[8] S. S. Gon, S. Z. Lee, Z. Shen, W. S. Tang, “Construction of Schauder decomposition on banach spaces of periodic functions”, Proceedings of the Edinburgh Mathematical Society, 41:1 (1998), 61–91 | DOI | MR

[9] B. Han, “On dual wavelet tight frames”, ACHA, 4 (1997), 380–413 | MR | Zbl

[10] B. Han, “Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix”, J. Comput. Appl. Math., 155 (2003), 43–67 | DOI | MR | Zbl

[11] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Springer, Singapore, 2016, 182 pp. | MR | Zbl

[12] E. Lebedeva, “On a connection between nonstationary and periodic wavelets”, J. Math. Anal. Appl., 451:1 (2017), 434–447 | DOI | MR | Zbl

[13] Y. Meyer, Ondelettes, Herman, Paris, 1990 | MR

[14] A. P. Petukhov, “Periodic wavelets”, Mat. Sb., 188:10 (1997), 69–94 | DOI | MR | Zbl

[15] A. Ron, Z. Shen, “Gramian analysis of affine bases and affine frames”, Approximation Theory VIII, v. 2, Wavelets, eds. C.K. Chui and L. Schumaker, World Scientific Publishing Co. Inc, Singapore, 1995, 375–382 | MR | Zbl

[16] A. Ron, Z. Shen, “Frame and stable bases for shift-invariant subspaces of L2(Rd)”, Canad. J. Math., 47:5 (1995), 1051–1094 | DOI | MR | Zbl

[17] A. Ron, Z. Shen, “Affine systems in L2(Rd): the analysis of the analysis operator”, J. Func. Anal., 148 (1997), 408–447 | DOI | MR | Zbl

[18] A. Ron, Z. Shen, “Affine systems in L2(Rd): dual systems”, J. Fourier. Anal. Appl., 3 (1997), 617–637 | DOI | MR

[19] M. Skopina, “Local convergence of Fourier series with respect to periodized wavelets”, J. Approx. Theory, 94 (1998), 191–202 | DOI | MR | Zbl

[20] M. Skopina, “Wavelet approximation of periodic functions”, J. Approx. Theory, 104 (2000), 302–329 | DOI | MR | Zbl

[21] M. Skopina, “Multiresolution analysis of periodic functions”, East Journal On Approximations, 3:2 (1997), 203–224 | MR | Zbl

[22] G. G. Walter, L. Cai, “Periodic Wavelets from Scratch”, Journal of Computational Analysis and Applications, 1:1 (1999), 25–41 | DOI | MR

[23] V. A. Zheludev, “Periodic splines and wavelets”, Proc. of the Conference “Math. Analysis and Signal Processing” (Cairo, Jan. 2-9, 1994) | MR

[24] Novikov I. Y., Protasov V. Y., Skopina M. A., Wavelet Theory, American Mathematical Society, 2011 | MR | Zbl

[25] I. Maksimenko, M. Skopina, “Multivariate periodic wavelets”, St. Petersburg Math. J., 15 (2004), 165–190 | DOI | MR | Zbl