The history of mechanical resonance -- from initial studies to autoresonance
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 269-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper traces the historical development process of one of the most important concepts of the mechanical oscillations theory – resonance, starting from the XVII century to the present day. It is noted that resonance is of great theoretical and practical importance, but there is no sufficiently strict and comprehensive definition for this term. The prehistory of resonance is mentioned and the initial studies associated with the works of Galileo Galilei, who first described resonance using the example of an ordinary pendulum, and Christiaan Huygens, who studied the phenomenon of sympathetic resonance using the example of two pendulums on a common beam support, are discussed. The leading role of orbital resonances in the XVIII-XIX centuries, that indicate the evolutionary maturity of the Solar system, is noted, and the internal resonances in terrestrial mechanics are analyzed using the example of double and spherical pendulums. The classical harmonic resonance is analyzed in detail, and it played a significant role in technology. The harmful role of resonance is demonstrated by the example of catastrophes with bridge structures. In addition, a classification of various types of resonance, which was formed in the XIX-XX centuries, is given. The term "autoresonance" associated with the name of A. A. Andronov was the last step in this chain. Autoresonance made it possible to effectively swing the system using feedbacks, thereby adapting the driving forces to the properties of the system itself. Several illustrative examples of autoresonance in pendulum systems are given. In conclusion, it is noted that autoresonances gradually began to take a serious place in robotics and biomechanics, and their use turned out to be the most important step into the world of optimal motion modes.
Keywords: acoustic resonance, sympathetic resonance, internal (structural) resonance, orbital (astronomical) resonance, harmonic (technical) resonance, antiresonance, superharmonic (ultraharmonic) resonance, subharmonic resonance, combinational (subultraharmonic) resonance, parametric resonance, self-oscillating (self-excited) resonance, autoresonance (controlled resonance), bioresonance, quasi-resonance, true resonance.
@article{CHEB_2022_23_1_a18,
     author = {A. S. Smirnov and B. A. Smolnikov},
     title = {The history of mechanical resonance -- from initial studies to autoresonance},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {269--292},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a18/}
}
TY  - JOUR
AU  - A. S. Smirnov
AU  - B. A. Smolnikov
TI  - The history of mechanical resonance -- from initial studies to autoresonance
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 269
EP  - 292
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a18/
LA  - ru
ID  - CHEB_2022_23_1_a18
ER  - 
%0 Journal Article
%A A. S. Smirnov
%A B. A. Smolnikov
%T The history of mechanical resonance -- from initial studies to autoresonance
%J Čebyševskij sbornik
%D 2022
%P 269-292
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a18/
%G ru
%F CHEB_2022_23_1_a18
A. S. Smirnov; B. A. Smolnikov. The history of mechanical resonance -- from initial studies to autoresonance. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 269-292. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a18/

[1] Brown E. W., Elements of the theory of resonance, at the University press, Cambridge, 1932, 60 pp.

[2] Smirnov A. S., Smolnikov B. A., “Upravlenie rezonansnymi kolebaniyami v nelineinykh mekhanicheskikh sistemakh”, Trudy seminara «Kompyuternye metody v mekhanike sploshnoi sredy» 2016–2017 gg, 2018, 23–39

[3] Smolnikov B. A., Smirnov A. S., “Istoriya rezonansa – ot prostogo rezonansa do avtorezonansa”, IX Polyakhovskie chteniya, Materialy mezhdunarodnoi nauchnoi konferentsii po mekhanike (9-12 marta 2021 g., Sankt-Peterburg, Rossiya), 2021, 457–459

[4] Frova A., Marenzana M., Thus spoke Galileo: the great scientist's ideas and their relevance to the present day, Oxford University Press, 2006, 493 pp.

[5] Jones M. D., Flaxman L., The Resonance Key New Page Books: Exploring the Links Between Vibration, Consciousness, and the Zero Point Grid, New Page Books, 2009, 256 pp.

[6] Fradkov A. L., Kiberneticheskaya fizika, Nauka, SPb., 2003, 208 pp.

[7] Galilei G., Izbrannye trudy, v. 2, Nauka, M., 1964, 572 pp.

[8] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[9] Christiaan Hugens, Oeuvres complètes, 17, Swets Zeitlinger N. V., Amsterdam, 1967, 552 pp.

[10] Blekhman I. I., Sinkhronizatsiya v prirode i tekhnike, Nauka, M., 1981, 352 pp. | MR

[11] Alven Kh., Arrenius G., Evolyutsiya solnechnoi sistemy, Mir, M., 1979, 512 pp.

[12] Smolnikov B. A., Mekhanika v istorii nauki i obschestva, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2014, 608 pp.

[13] Roi A., Dvizhenie po orbitam, Mir, M., 1981, 544 pp.

[14] Appel P., Teoreticheskaya mekhanika, v. 2, Dinamika sistemy. Analiticheskaya mekhanika, Fizmatlit, M., 1960, 487 pp.

[15] Stoyanovskii S. M., Smirnov A. S., “Evolyutsionnaya dinamika mayatnikovykh sistem s neskolkimi stepenyami svobody”, Nedelya nauki SPbPU, Materialy nauchnoi konferentsii s mezhdunarodnym uchastiem. Luchshie doklady, 2018, 224–229

[16] Bernoulli D., “Commentatio physico-mechanica specialior de motibus reciprocis compositis. Multifariis nondum exploratis, qui in pendulis bimembribus facilius observari possint in confirmationem principii sui de coexistentia vibrationum simpliciorum”, Novi commentarii Academiae Scientiarum Imperialis Petropolitanae, 19 (1774), 260–284

[17] Smirnov A. S., Smolnikov B. A., “Istoriya issledovanii dvoinogo mayatnika”, Istoriya nauki i tekhniki, 2020, no. 12, 3–12 | MR | Zbl

[18] Loitsyanskii L. G., Lure A. I., Teoreticheskaya mekhanika, v. 3, Dinamika nesvobodnoi sistemy i teoriya kolebanii, ONTI, M.–L., 1934, 625 pp.

[19] Smirnov A. S., Smolnikov B. A., Mekhanika sfericheskogo mayatnika, Politekh-press, SPb., 2019, 266 pp.

[20] Puiseux V. A., “Sur le mouvement d'un point matériel pesant sur une sphère”, Journal de Mathématiques pures et appliquées, 7:1 (1842), 517–520

[21] Krylov A. N., Sobranie trudov, V 12 t., Ch. 1, v. 3, izd-vo AN SSSR, M.–L., 1949, 350 pp. | MR

[22] Timoshenko S. P., Kolebaniya v inzhenernom dele, Nauka, M., 1967, 444 pp.

[23] Butikov E. I., Bykov A. A., Kondratev A. S., Fizika dlya postupayuschikh v vuzy, Nauka, M., 1982, 608 pp.

[24] Merkin D. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1987, 304 pp.

[25] Biderman V. L., Teoriya mekhanicheskikh kolebanii, Vysshaya shkola, M., 1980, 408 pp.

[26] Panovko Ya. G., Gubanova I. I., Ustoichivost i kolebaniya uprugikh sistem, Nauka, M., 1979, 384 pp. | MR

[27] I. A. Birger, Ya. G. Panovko (red.), Prochnost, ustoichivost, kolebaniya, Spravochnik v trekh tomakh, v. 3, Mashinostroenie, M., 1968, 567 pp.

[28] Panovko Ya. G., Vvedenie v teoriyu mekhanicheskikh kolebanii, Nauka, M., 1991, 256 pp. | MR

[29] Krupenin V. L., “Ob otsenke chisla periodicheskikh rezhimov dvizheniya nelineinykh kolebatelnykh sistem pri periodicheskom poligarmonicheskom vozbuzhdenii kolebanii”, Vestnik nauchno-tekhnicheskogo razvitiya, 2013, no. 4 (68), 14–19

[30] Olkhovskii I. I., Kurs teoreticheskoi mekhaniki dlya fizikov, izd-vo Moskovskogo un-ta, M., 1974, 569 pp.

[31] Panovko Ya. G, Osnovy prikladnoi teorii kolebanii i udara, Mashinostroenie, L., 1976, 320 pp.

[32] Chechurin S. L., Parametricheskii rezonans – bol i radost, izd-vo SPbGPU, CPb, 2014, 67 pp.

[33] Mandelshtam L. I., Lektsii po teorii kolebanii, Nauka, M., 1972, 470 pp. | MR

[34] Hill G. W., “On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon”, Acta Methematica, 8 (1886), 1–36 | DOI | MR

[35] Kovacic I., Rand R., Sah S. M., “Mathieu's Equation and its Generalizations: Overview of Stability Charts and their Features”, Applied Mechanics Reviews, 7:2 (2018), 020802 | DOI

[36] Ince E., “Research Into the Characteristic Numbers of Mathieu Equation”, Proceedings of the Royal Society of Edinburgh, 1927, 20–29 | DOI

[37] Strutt M. J. O., “Zur Wellenmechanik des Atomgitters”, Annalen der Physik, 391:10 (1928), 319–324 | DOI

[38] Smirnov A. S., Degilevich E. A., Kolebaniya tsepnykh sistem, Politekh-press, SPb., 2021, 246 pp.

[39] Raus Dzh. E., Dinamika sistemy tverdykh tel, V 2 tomakh, v. 2, Nauka, M., 1983, 544 pp.

[40] Taylor R., Phillips R., “Fall of the Broughton suspension bridge, near Manchester”, The Philosophical Magazine, Or Annals of Chemistry, Mathematics, Astronomy, Natural History, and General Science, 9:53 (1831), 384–389

[41] “Rapport de la commission d'enquête nommée par arrêté de M. le préfet de Maine-et-Loire, en date du 20 avril 1850, pour rechercher les causes et les circonstances qui ont amené la chute du pont suspendu de la Basse-Chaine. No 237”, Annales des ponts et chaussées, XX (1850), 394–411

[42] Bunin M. S., Mosty Leningrada. Ocherki istorii i arkhitektury mostov Peterburga – Petrograda – Leningrada, Stroiizdat, L., 1986, 280 pp.

[43] Krylov A. N., Vibratsiya sudov, ONTI NKTP SSSR, L.–M., 1936, 442 pp.

[44] Kochedamov V. I., Mosty Leningrada, Iskusstvo, L.–M., 1958, 60 pp.

[45] Tsigler G., Osnovy teorii ustoichivosti konstruktsii, Mir, M., 1971, 192 pp.

[46] Bishop R., Kolebaniya, Nauka, M., 1986, 192 pp.

[47] Billah K. Y., Scanlan R. H., “Resonance, Tacoma Narrows Bridge failure, and undergraduate physics textbooks”, American Journal of Physics, 59:2 (1991), 118–124 | DOI

[48] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981, 918 pp. | MR

[49] G. V. Kreinin (red.), Dinamika mashin i upravlenie mashinami. Spravochnik, Mashinostroenie, M., 1988, 240 pp.

[50] Astashev V. K., “O novykh napravleniyakh ispolzovaniya yavleniya rezonansa v mashinakh”, Vestnik nauchno-tekhnicheskogo razvitiya, 2011, no. 8 (48), 10–15

[51] Fradkov A. L., “Issledovanie fizicheskikh sistem pri pomoschi obratnykh svyazei”, Avtomatika i telemekhanika, 1999, no. 3, 213–230

[52] Fradkov A. L., “Exploring nonlinearity by feedback”, Physica D, 128:2-4 (1999), 159–168 | DOI | Zbl

[53] Magnus K., Kolebaniya: vvedenie v issledovanie kolebatelnykh sistem, Mir, M., 1982, 304 pp.

[54] Smirnov A. S., Smolnikov B. A., “Upravlenie protsessom raskachivaniya kachelei”, Nedelya nauki SPbPU, Materialy nauchnogo foruma s mezhdunarodnym uchastiem, Institut prikladnoi matematiki i mekhaniki, 2016, 106–109

[55] Smirnov A. S., Smolnikov B. A., “Kollinearnoe upravlenie dvizheniem odnozvennogo manipulyatora s peremennym usileniem”, Molodezh i nauka: Aktualnye problemy fundamentalnykh i prikladnykh issledovanii, Materialy IV Vserossiiskoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh (Komsomolsk-na-Amure, 12-16 aprelya, 2021), v. 2, 2021, 70–73 | DOI

[56] Merkin D. R., Smolnikov B. A., Prikladnye zadachi dinamiki tverdogo tela, izd-vo S.-Peterb. un-ta, SPb., 2003, 534 pp.

[57] Smolnikov B. A., Problemy mekhaniki i optimizatsii robotov, Nauka, M., 1991, 232 pp. | MR

[58] Smirnov A. S., Smolnikov B. A., “Upravlenie rezonansnymi kolebaniyami nelineinykh mekhanicheskikh sistem na osnove printsipov biodinamiki”, Mashinostroenie i inzhenernoe obrazovanie, 2017, no. 4 (53), 11–19

[59] Usvitskii I., Mekhanika, udobnaya mekhanizmam, Znanie-sila, 6, 1986

[60] Dolginov A. I., Rezonans v elektricheskikh tsepyakh i sistemakh, Gos. energ. izd-vo, M.–L., 1957, 328 pp.