On the Poincar\'e--Birkhoff theorem as the important result of the theory of dynamical systems
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 209-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to study the history of the Poincaré–Birkhoff theorem, which is not only one of the results underlying the theory of dynamical systems, but is important for applications. Until now, the Poincaré–Birkhoff theorem has been considered historically only fragmentarily and has not been the subject of consistent historical research. The research is based on the analysis of original works, historical and scientific literature, involving the recollections of participants in the described events. Poincaré's idea was to establish the periodic motions of dynamical systems using the geometric theorem he proposed. Periodic movements, in turn, were supposed to serve as a basis for studying other, complex movements. The search for a proof was a powerful impetus for Birkhoff in the construction of the theory of dynamical systems, who, together with Poincaré, is the founder of this area of mathematics. Poincaré–Birkhoff theorem is of key importance in understanding the mechanism of the onset of chaotic motion in Hamiltonian systems. The history of the Poincaré–Birkhoff theorem is not complete; it plays a significant role in the modern theory of dynamical systems and its applications. The search continues for a proof of a multidimensional analogue of the theorem, its various generalizations, and further applications.
Keywords: integration of differential equations, three-body problem, dynamical system, periodic motions, chaotic motions.
@article{CHEB_2022_23_1_a15,
     author = {R. R. Mukhin},
     title = {On the {Poincar\'e--Birkhoff} theorem as the important result of the theory of dynamical systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {209--222},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/}
}
TY  - JOUR
AU  - R. R. Mukhin
TI  - On the Poincar\'e--Birkhoff theorem as the important result of the theory of dynamical systems
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 209
EP  - 222
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/
LA  - ru
ID  - CHEB_2022_23_1_a15
ER  - 
%0 Journal Article
%A R. R. Mukhin
%T On the Poincar\'e--Birkhoff theorem as the important result of the theory of dynamical systems
%J Čebyševskij sbornik
%D 2022
%P 209-222
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/
%G ru
%F CHEB_2022_23_1_a15
R. R. Mukhin. On the Poincar\'e--Birkhoff theorem as the important result of the theory of dynamical systems. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 209-222. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/

[1] Puankare A., A. Puankare. Izbrannye trudy, v. I, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 772 pp. ; т. II, 1972, 998 с. | MR

[2] Nyuton I., Matematicheskie nachala naturalnoi filosofii, Nauka, M., 1989, 690 pp. | MR

[3] Idelson N.I., “Zakon vsemirnogo tyagoteniya i teoriya dvizheniya Luny”: N.I. Idelson, Etyudy po istorii nebesnoi mekhaniki, Nauka, M., 1975, 205–272 | MR

[4] Poincaré H., “Memoire sur les courbes définies par une équation differentielle”, J. math. pures et appl. Sér. 3, 7 (1881), 375–422 ; 8 (1882), 251–296; J. math. pures et appl. Sér. 4, 1 (1885), 167–244; 2 (1886), 151–217 | MR

[5] Subbotin M.F., “Astronomicheskie raboty Leonarda Eilera”, Leonard Eiler, Sb. v chest 250-letiya so dnya rozhdeniya, Izd-vo AN SSSR, M., 1958, 268–376 | MR

[6] Lagrange J.L., “Essai sur le Problème des trois Corps”, Oeuvres de Lagrange, v. VI, Paris, 1873, 229–234 | MR

[7] Hill G.W., “Researches in the Lunar Theory”, Am. J. Math., 1 (1878), 5–26 ; 129–147; 245–260 | DOI | MR

[8] Poincaré H., “Sur certaines solutions particuliéres du problème des trois corps”, Comp. Rend., 97 (1883), 251–252

[9] Poincaré H., “Sur certaines solutions particuliéres du problème des trois corps”, Bull. astronom., 1 (1884), 65–74 | DOI

[10] Poincaré H., “Sur le problème des trois corps et les équations de la Dynamique”, Acta Math., 13 (1890), 1–270

[11] Marshal K., Zadacha trekh tel, Inst. kompyut. issled., M.-Izhevsk, 2004, 640 pp.

[12] Poincaré H., “Sur les solutions périodiques et le principle de moindre action”, Comp. Rend., 123 (1896), 915–918

[13] Shensine A., “Ob odnoi zametke Puankare”, Nelin. dinamika, 1:1 (2005), 143–154

[14] Hadamard J., “Les surfaces à courbures opposeés et leurs lignes géodésiques”, J. Math. pures et appl., 4 (1898), 27–73

[15] Poincaré H., “Sur les lignes géodésiques des surfaces convexes”, Trans. AMS, 6 (1905), 237–274 | MR

[16] Puankare A., “Nauka i metod”, A. Puankare. O nauke, Nauka, M., 1983, 284–403 | MR

[17] Poincaré H., “Sur un théorème de géometrie”, Rendicont. Circolo mat. Palermo, 33 (1912), 375–407 | DOI

[18] Birkhoff G.D., Dynamical Systems, AMS, Providence, Rhod Island, 1927, ix+295 pp. | MR

[19] Birkhoff G.D., “Proof of Poincare's geometric theorem”, Trans. AMS, 14 (1913), 14–22 | MR

[20] Veblen O., “George David Berkhoff”, Biograph. Memoirs, 80, The National Academy Press, 2001, 2–14

[21] Birkhoff G.D., “An extension of Poincare's last geometric theorem”, Acta. Math., 47 (1926), 297–311 | DOI | MR

[22] Brown M., Neumann W.D., “Proof of Poincare-Birkhoff fixed point theorem”, Michigan Math. J., 24 (1977), 21–31 | DOI | MR | Zbl

[23] Kirillov A.N., “Poslednyaya geometricheskaya teorema Puankare: istoriya i drama idei”, Seminar po istorii matematiki (7 sentyabrya 2017 g. SPb., POMI, Fontanka 27)

[24] Hurvitz W.A., “The Chicago Colloquium”, Bull. AMS, 27 (1920), 65–71 | DOI | MR

[25] Birkhoff G.D., “On the periodic motions of dynamical systems”, Acta Math., 50 (1927), 359–379 | DOI | MR

[26] Birkhoff G.D., “A remark on the dynamical rule of Poincare's last geometric theorem”, Acta litt. ac Scientiarum, sect Sciantiarum math. Szeged, 4, 15 Aug (1928), 6–11

[27] Birkhoff G.D., Smith P., “Structure Analysis of Surface Transformations”, J. Math. Pures Appl., 9 (1928), 345–379

[28] Birkhoff G.D., “Nouvelles recherches sur les systèms dynamiques”, Mem. Pont. Acad. Sci. Novi Lyncaei, 1:3 (1935), 85–216

[29] Zaslavskii G.M., Chirikov B.V., “Stokhasticheskaya neustoichivost nelineinykh kolebanii”, Uspekhi fiz. nauk, 105:1 (1971), 3–39 | DOI

[30] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984, 528 pp.

[31] Arnold V.I., “Ob ustoichivosti polozhenii ravnovesiya gamiltonovoi sistemy obyknovennykh differentsialnykh uravnenii v obschem ellipticheskom sluchae”, DAN SSSR, 137:2 (1961), 255–257 | Zbl

[32] Loskutov A.Yu., “Dinamicheskii khaos. Sistemy klassicheskoi mekhaniki”, Uspekhi fiz. nauk, 177:9 (2007), 989–1015 | DOI

[33] Arnold V.I., Avez A., Ergodic problems of classical mechanics, Princeton Univ. Press, Princeton, N.J., 1968, 286 pp. | MR

[34] Zaslavskii G.M., Fizika khaosa v gamiltonovykh sistemakh, Inst. kompyut. issled., M.-Izhevsk, 2004, 288 pp.

[35] Arnold V.I., “Pervye shagi simplekticheskoi topologii”, UMN, 41:6 (1986), 3–18 | DOI | MR | Zbl

[36] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | MR

[37] Arnold V.I., “Nedootsenennyi Puankare”, UMN, 61:1 (2006), 3–24 | DOI | MR | Zbl

[38] Cohnley C.C., Zehnder E., “The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold”, Invent. Math., 73 (1983), 33–49 | DOI | MR