Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_1_a15, author = {R. R. Mukhin}, title = {On the {Poincar\'e--Birkhoff} theorem as the important result of the theory of dynamical systems}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {209--222}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/} }
TY - JOUR AU - R. R. Mukhin TI - On the Poincar\'e--Birkhoff theorem as the important result of the theory of dynamical systems JO - Čebyševskij sbornik PY - 2022 SP - 209 EP - 222 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/ LA - ru ID - CHEB_2022_23_1_a15 ER -
R. R. Mukhin. On the Poincar\'e--Birkhoff theorem as the important result of the theory of dynamical systems. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 209-222. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a15/
[1] Puankare A., A. Puankare. Izbrannye trudy, v. I, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 772 pp. ; т. II, 1972, 998 с. | MR
[2] Nyuton I., Matematicheskie nachala naturalnoi filosofii, Nauka, M., 1989, 690 pp. | MR
[3] Idelson N.I., “Zakon vsemirnogo tyagoteniya i teoriya dvizheniya Luny”: N.I. Idelson, Etyudy po istorii nebesnoi mekhaniki, Nauka, M., 1975, 205–272 | MR
[4] Poincaré H., “Memoire sur les courbes définies par une équation differentielle”, J. math. pures et appl. Sér. 3, 7 (1881), 375–422 ; 8 (1882), 251–296; J. math. pures et appl. Sér. 4, 1 (1885), 167–244; 2 (1886), 151–217 | MR
[5] Subbotin M.F., “Astronomicheskie raboty Leonarda Eilera”, Leonard Eiler, Sb. v chest 250-letiya so dnya rozhdeniya, Izd-vo AN SSSR, M., 1958, 268–376 | MR
[6] Lagrange J.L., “Essai sur le Problème des trois Corps”, Oeuvres de Lagrange, v. VI, Paris, 1873, 229–234 | MR
[7] Hill G.W., “Researches in the Lunar Theory”, Am. J. Math., 1 (1878), 5–26 ; 129–147; 245–260 | DOI | MR
[8] Poincaré H., “Sur certaines solutions particuliéres du problème des trois corps”, Comp. Rend., 97 (1883), 251–252
[9] Poincaré H., “Sur certaines solutions particuliéres du problème des trois corps”, Bull. astronom., 1 (1884), 65–74 | DOI
[10] Poincaré H., “Sur le problème des trois corps et les équations de la Dynamique”, Acta Math., 13 (1890), 1–270
[11] Marshal K., Zadacha trekh tel, Inst. kompyut. issled., M.-Izhevsk, 2004, 640 pp.
[12] Poincaré H., “Sur les solutions périodiques et le principle de moindre action”, Comp. Rend., 123 (1896), 915–918
[13] Shensine A., “Ob odnoi zametke Puankare”, Nelin. dinamika, 1:1 (2005), 143–154
[14] Hadamard J., “Les surfaces à courbures opposeés et leurs lignes géodésiques”, J. Math. pures et appl., 4 (1898), 27–73
[15] Poincaré H., “Sur les lignes géodésiques des surfaces convexes”, Trans. AMS, 6 (1905), 237–274 | MR
[16] Puankare A., “Nauka i metod”, A. Puankare. O nauke, Nauka, M., 1983, 284–403 | MR
[17] Poincaré H., “Sur un théorème de géometrie”, Rendicont. Circolo mat. Palermo, 33 (1912), 375–407 | DOI
[18] Birkhoff G.D., Dynamical Systems, AMS, Providence, Rhod Island, 1927, ix+295 pp. | MR
[19] Birkhoff G.D., “Proof of Poincare's geometric theorem”, Trans. AMS, 14 (1913), 14–22 | MR
[20] Veblen O., “George David Berkhoff”, Biograph. Memoirs, 80, The National Academy Press, 2001, 2–14
[21] Birkhoff G.D., “An extension of Poincare's last geometric theorem”, Acta. Math., 47 (1926), 297–311 | DOI | MR
[22] Brown M., Neumann W.D., “Proof of Poincare-Birkhoff fixed point theorem”, Michigan Math. J., 24 (1977), 21–31 | DOI | MR | Zbl
[23] Kirillov A.N., “Poslednyaya geometricheskaya teorema Puankare: istoriya i drama idei”, Seminar po istorii matematiki (7 sentyabrya 2017 g. SPb., POMI, Fontanka 27)
[24] Hurvitz W.A., “The Chicago Colloquium”, Bull. AMS, 27 (1920), 65–71 | DOI | MR
[25] Birkhoff G.D., “On the periodic motions of dynamical systems”, Acta Math., 50 (1927), 359–379 | DOI | MR
[26] Birkhoff G.D., “A remark on the dynamical rule of Poincare's last geometric theorem”, Acta litt. ac Scientiarum, sect Sciantiarum math. Szeged, 4, 15 Aug (1928), 6–11
[27] Birkhoff G.D., Smith P., “Structure Analysis of Surface Transformations”, J. Math. Pures Appl., 9 (1928), 345–379
[28] Birkhoff G.D., “Nouvelles recherches sur les systèms dynamiques”, Mem. Pont. Acad. Sci. Novi Lyncaei, 1:3 (1935), 85–216
[29] Zaslavskii G.M., Chirikov B.V., “Stokhasticheskaya neustoichivost nelineinykh kolebanii”, Uspekhi fiz. nauk, 105:1 (1971), 3–39 | DOI
[30] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984, 528 pp.
[31] Arnold V.I., “Ob ustoichivosti polozhenii ravnovesiya gamiltonovoi sistemy obyknovennykh differentsialnykh uravnenii v obschem ellipticheskom sluchae”, DAN SSSR, 137:2 (1961), 255–257 | Zbl
[32] Loskutov A.Yu., “Dinamicheskii khaos. Sistemy klassicheskoi mekhaniki”, Uspekhi fiz. nauk, 177:9 (2007), 989–1015 | DOI
[33] Arnold V.I., Avez A., Ergodic problems of classical mechanics, Princeton Univ. Press, Princeton, N.J., 1968, 286 pp. | MR
[34] Zaslavskii G.M., Fizika khaosa v gamiltonovykh sistemakh, Inst. kompyut. issled., M.-Izhevsk, 2004, 288 pp.
[35] Arnold V.I., “Pervye shagi simplekticheskoi topologii”, UMN, 41:6 (1986), 3–18 | DOI | MR | Zbl
[36] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | MR
[37] Arnold V.I., “Nedootsenennyi Puankare”, UMN, 61:1 (2006), 3–24 | DOI | MR | Zbl
[38] Cohnley C.C., Zehnder E., “The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold”, Invent. Math., 73 (1983), 33–49 | DOI | MR