Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 167-182

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers extremal problems of mean-square approximation of functions of a complex variable, regular in the domain $\mathscr{D}\subset\mathbb{C}$, by Fourier series orthogonal in the system of functions $\{\varphi_{k}(z)\}_{k=0}^{\infty}$ in $\mathscr{D}$ belonging to the weighted Bergman space $B_{2,\gamma}$ with finite norm \begin{equation*} \|f\|_{2,\gamma}:=\|f\|_{B_{2,\gamma}}=\left(\frac{1}{2\pi}\iint\limits_{(\mathscr{D})}\gamma(|z|)|f(z)|^{2}d\sigma\right)^{1/2},\end{equation*} where $\gamma:=\gamma(|z|)\geq 0$ is a real integrable function in the domain $\mathscr{D}$, and the integral is understood in the Lebesgue sense, $d\sigma:=dxdy$ is an element of area. The formulated problem is investigated in more detail in the case when $\mathscr{D}$ is the unit disc in the space $B_{2,\gamma_{\alpha,\beta}}, \gamma_{\alpha,\beta}=|z|^{\alpha}(1-|z|)^{\beta}, \alpha,\beta>-1$ – Jacobi weight. Sharp Jackson-Stechkin-type inequalities that relate the value of the best mean-squared polynomial approximation of $f\in \mathcal{B}_{2,\gamma_{\alpha,\beta}}^{(r)}$ and the Peetre $\mathscr{K}$-functional were proved. In case when $\gamma_{\alpha,\beta}\equiv 1$ we will obtain the earlier known results.
Keywords: Fourier's sum, mean-squared approximation, upper bound best approximation, Peetre $\mathscr{K}$-functional.
@article{CHEB_2022_23_1_a12,
     author = {M. Sh. Shabozov and M. S. Saidusainov},
     title = {Mean-squared approximation of some classes of complex variable functions by {Fourier} series in the weighted {Bergman} space $B_{2,\gamma}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {167--182},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. S. Saidusainov
TI  - Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 167
EP  - 182
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
LA  - ru
ID  - CHEB_2022_23_1_a12
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. S. Saidusainov
%T Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
%J Čebyševskij sbornik
%D 2022
%P 167-182
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
%G ru
%F CHEB_2022_23_1_a12
M. Sh. Shabozov; M. S. Saidusainov. Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 167-182. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/