Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 167-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers extremal problems of mean-square approximation of functions of a complex variable, regular in the domain $\mathscr{D}\subset\mathbb{C}$, by Fourier series orthogonal in the system of functions $\{\varphi_{k}(z)\}_{k=0}^{\infty}$ in $\mathscr{D}$ belonging to the weighted Bergman space $B_{2,\gamma}$ with finite norm \begin{equation*} \|f\|_{2,\gamma}:=\|f\|_{B_{2,\gamma}}=\left(\frac{1}{2\pi}\iint\limits_{(\mathscr{D})}\gamma(|z|)|f(z)|^{2}d\sigma\right)^{1/2},\end{equation*} where $\gamma:=\gamma(|z|)\geq 0$ is a real integrable function in the domain $\mathscr{D}$, and the integral is understood in the Lebesgue sense, $d\sigma:=dxdy$ is an element of area. The formulated problem is investigated in more detail in the case when $\mathscr{D}$ is the unit disc in the space $B_{2,\gamma_{\alpha,\beta}}, \gamma_{\alpha,\beta}=|z|^{\alpha}(1-|z|)^{\beta}, \alpha,\beta>-1$ – Jacobi weight. Sharp Jackson-Stechkin-type inequalities that relate the value of the best mean-squared polynomial approximation of $f\in \mathcal{B}_{2,\gamma_{\alpha,\beta}}^{(r)}$ and the Peetre $\mathscr{K}$-functional were proved. In case when $\gamma_{\alpha,\beta}\equiv 1$ we will obtain the earlier known results.
Keywords: Fourier's sum, mean-squared approximation, upper bound best approximation, Peetre $\mathscr{K}$-functional.
@article{CHEB_2022_23_1_a12,
     author = {M. Sh. Shabozov and M. S. Saidusainov},
     title = {Mean-squared approximation of some classes of complex variable functions by {Fourier} series in the weighted {Bergman} space $B_{2,\gamma}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {167--182},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. S. Saidusainov
TI  - Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 167
EP  - 182
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
LA  - ru
ID  - CHEB_2022_23_1_a12
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. S. Saidusainov
%T Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
%J Čebyševskij sbornik
%D 2022
%P 167-182
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
%G ru
%F CHEB_2022_23_1_a12
M. Sh. Shabozov; M. S. Saidusainov. Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 167-182. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/

[1] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.-L., 1964, 440 pp. | MR

[2] Abilov V.A., Abilova F.V., Kerimov M.K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, ZhVMMF, 50:6 (2010), 999–1004 | MR | Zbl

[3] Shabozov M.Sh., Saidusainov M.S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | MR | Zbl

[4] Bitsadze A.V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984, 320 pp. | MR

[5] Shabozov M.Sh., Saidusainov M.S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | DOI | Zbl

[6] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970, 800 pp.

[7] Vakarchuk S.B., “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl

[8] Shabozov M.Sh., Vakarchuk S.B., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami i tochnykh znacheniyakh poperechnikov funktsionalnykh klassov v $L_2$”, Analysis Mathematica, 38:2 (2012), 147–159 | DOI | MR | Zbl

[9] Shabozov M.Sh., Vakarchuk S.B., Zabutnaya V.I., “Structural characteristics of functions from $L_2$ and the exact values of widths of some functional classes”, Journal of Mathematical Sciences, 206:1 (2015), 97–114 | DOI | MR | Zbl

[10] Vakarchuk S.B., Shabozov M.Sh., “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Matematicheskii sbornik, 201:8 (2010), 3–22 | DOI | MR | Zbl

[11] Shabozov M.Sh., Yusupov G.A., “Nailuchshie metody priblizheniya i znacheniya poperechnikov nekotorykh klassov funktsii v prostranstve $H_{q,\rho},~1\leq q\leq\infty,~0\rho\leq 1$”, Sibirskii matematicheskii zhurnal, 57:2(336) (2016), 469–480 | MR

[12] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[13] Mhaskar N.H., “Weighted polynomial Approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl

[14] Ditzian Z., Totik V., “$\mathscr{K}$-functionals and best polynomial approximation in weighted $L^{p}(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl

[15] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva-Ermita i poperechniki funktsionalnykh klassov”, Matem. zametki, 95:5 (2014), 666–684 | DOI | Zbl

[16] Shabozov M.Sh., Saidusainov M.S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 2, 2019, 351–364

[17] Saidusaynov M.S., “$\mathscr{K}$-functionals and exact values of $n$-widths in the Bergman space”, Ural Mathematical Journal, 3:2(5) (2017), 74–81 | DOI | MR