Keywords: mean-squared approximation, upper bound best approximation, Peetre $\mathscr{K}$-functional.
@article{CHEB_2022_23_1_a12,
author = {M. Sh. Shabozov and M. S. Saidusainov},
title = {Mean-squared approximation of some classes of complex variable functions by {Fourier} series in the weighted {Bergman} space $B_{2,\gamma}$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {167--182},
year = {2022},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/}
}
TY - JOUR
AU - M. Sh. Shabozov
AU - M. S. Saidusainov
TI - Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
JO - Čebyševskij sbornik
PY - 2022
SP - 167
EP - 182
VL - 23
IS - 1
UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
LA - ru
ID - CHEB_2022_23_1_a12
ER -
%0 Journal Article
%A M. Sh. Shabozov
%A M. S. Saidusainov
%T Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$
%J Čebyševskij sbornik
%D 2022
%P 167-182
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
%G ru
%F CHEB_2022_23_1_a12
M. Sh. Shabozov; M. S. Saidusainov. Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 167-182. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a12/
[1] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.-L., 1964, 440 pp. | MR
[2] Abilov V.A., Abilova F.V., Kerimov M.K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, ZhVMMF, 50:6 (2010), 999–1004 | MR | Zbl
[3] Shabozov M.Sh., Saidusainov M.S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | MR | Zbl
[4] Bitsadze A.V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984, 320 pp. | MR
[5] Shabozov M.Sh., Saidusainov M.S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | DOI | Zbl
[6] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970, 800 pp.
[7] Vakarchuk S.B., “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl
[8] Shabozov M.Sh., Vakarchuk S.B., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami i tochnykh znacheniyakh poperechnikov funktsionalnykh klassov v $L_2$”, Analysis Mathematica, 38:2 (2012), 147–159 | DOI | MR | Zbl
[9] Shabozov M.Sh., Vakarchuk S.B., Zabutnaya V.I., “Structural characteristics of functions from $L_2$ and the exact values of widths of some functional classes”, Journal of Mathematical Sciences, 206:1 (2015), 97–114 | DOI | MR | Zbl
[10] Vakarchuk S.B., Shabozov M.Sh., “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Matematicheskii sbornik, 201:8 (2010), 3–22 | DOI | MR | Zbl
[11] Shabozov M.Sh., Yusupov G.A., “Nailuchshie metody priblizheniya i znacheniya poperechnikov nekotorykh klassov funktsii v prostranstve $H_{q,\rho},~1\leq q\leq\infty,~0\rho\leq 1$”, Sibirskii matematicheskii zhurnal, 57:2(336) (2016), 469–480 | MR
[12] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980
[13] Mhaskar N.H., “Weighted polynomial Approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl
[14] Ditzian Z., Totik V., “$\mathscr{K}$-functionals and best polynomial approximation in weighted $L^{p}(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl
[15] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva-Ermita i poperechniki funktsionalnykh klassov”, Matem. zametki, 95:5 (2014), 666–684 | DOI | Zbl
[16] Shabozov M.Sh., Saidusainov M.S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Trudy instituta matematiki i mekhaniki UrO RAN, 25, no. 2, 2019, 351–364
[17] Saidusaynov M.S., “$\mathscr{K}$-functionals and exact values of $n$-widths in the Bergman space”, Ural Mathematical Journal, 3:2(5) (2017), 74–81 | DOI | MR