Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_1_a11, author = {V. G. Chirskii}, title = {Infinite linear independence with constraints on a subset of prime numbers of values of {Eulerian-type} series with polyadic {Liouville} parameter}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {153--166}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a11/} }
TY - JOUR AU - V. G. Chirskii TI - Infinite linear independence with constraints on a subset of prime numbers of values of Eulerian-type series with polyadic Liouville parameter JO - Čebyševskij sbornik PY - 2022 SP - 153 EP - 166 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a11/ LA - ru ID - CHEB_2022_23_1_a11 ER -
%0 Journal Article %A V. G. Chirskii %T Infinite linear independence with constraints on a subset of prime numbers of values of Eulerian-type series with polyadic Liouville parameter %J Čebyševskij sbornik %D 2022 %P 153-166 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a11/ %G ru %F CHEB_2022_23_1_a11
V. G. Chirskii. Infinite linear independence with constraints on a subset of prime numbers of values of Eulerian-type series with polyadic Liouville parameter. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 153-166. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a11/
[1] Chiskii V. G., “Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter”, Dokl. Math., 102:2 (2020), 412–413 | DOI | MR
[2] Chirskii V. G., “Arithmetic Properties of an Euler-Type Series with Polyadic Liouvillean Parameter”, Russ.J.Math.Phys., 28:3 (2021), 294–302 | DOI | MR
[3] Chirskii V. G., “Arifmeticheskie svoistva znachenii v poliadicheskoi liuvillevoi tochke ryadov s poliadicheskim liuvillevym parametrom”, Chebyshevskii sbornik, 22:3, 156–167 | MR
[4] Nesterenko Yu. V., “Priblizheniya Ermita-Pade obobschennykh gipergeometricheskikh funktsii”, Matem.sb., 185:3 (1994), 39–72 ; Nesterenko Yu. V., “Hermite-Pade approximants of generalized hypergeometric functions”, Russ.Acad.Sci.Sb.Math., 83, 189–219 | Zbl | MR
[5] Ernvall-Hytonen A.-M., Matala-aho T.,Seppela L., “Euler's divergent series in arithmetic progressions”, J.Integer Sequences, 22 (2019), 19.2.2, 10 pp. | MR | Zbl
[6] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 512 pp.
[7] Bertrand D., Chiskii V., Yebbou J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, 13:2 (2004), 241–260 | DOI | MR | Zbl
[8] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987, 448 pp. ; Andrei B.Shidlovskii, Transcendental Numbers, W.de Gruyter, Berlin–New York, 1989, 467 pp. | MR | MR
[9] Chirskii V. G., “Arithmetic properties of polyadic series with periodic coefficients”, Dokl. Math., 90:3, 766–768 | DOI | MR | Zbl
[10] V.G. Chirskii, “Arithmetic properties of generalized hypergeometric $F$-series”, Dokl. Math., 98:3 (2018), 589–591 | DOI | MR | MR | Zbl
[11] Matala-aho T., Zudilin W., “Euler factorial series and global relations”, J. Number Theory, 186 (2018), 202–210 | DOI | MR | Zbl
[12] Chirskii V. G., “Product Formula, Global Relations and Polyadic Integers”, Russ. J. Math. Phys., 26:3 (2019), 286–305 | DOI | MR | Zbl
[13] Chirskii V. G., “Arithmetic properties of generalized hypergeometric $F$-series”, Russ. J. Math. Phys., 27:2 (2020), 175–184 | DOI | MR | Zbl
[14] Chirskii V. G., “Poliadicheskie chisla Liuvillya”, Chebyshevskii sbornik, 22:3, 245–255 | DOI | MR | Zbl
[15] Chirskii V. G., “O poliadicheskikh chislakh Liuvillya”, Chebyshevskii sbornik, 22:5, 243–251 | DOI | MR | Zbl