Integral manifolds of the first fundamental distribution $lcAC_S$-structure
Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 142-152
Voir la notice de l'article provenant de la source Math-Net.Ru
In paper we consider aspects of the Hermitian geometry of $lcAC_S$structures. The effect of the vanishing of the Neyenhuis tensor and the associated tensors $N^{(1)}$, $N^{(2)}$, $N^{(3)}$, $N^{(4)}$ on the class of almost Hermitian structure induced on the first fundamental distribution of $lcAC_S$structures is investigated. It is proved that the almost Hermitian structure induced on integral manifolds of the first fundamental distribution: $lcAC_S $-manifolds is a structure of the class $W_2\oplus W_4$, and it will be almost Kähler if and only if $grad \ \sigma \subset L(\xi)$; an integrable $lcAC_S $-manifold is a structure of the class $W_4$; a normal $lcAC_S$-manifold is a Kähler structure; a $lcAC_S $-manifold for which $N^{(2)} (X,Y)=0$, or $N^{(3)} (X)=0$, or $N^{(4)} (X)=0$, is an almost Kähler structure in the Gray-Herwell classification of almost Hermitian structures.
Keywords:
almost contact structures, almost Hermitian structures, integrability of structures, Neyenhuis tensor, normal structures.
@article{CHEB_2022_23_1_a10,
author = {A. R. Rustanov and E. A. Polkina and G. V. Teplyakova},
title = {Integral manifolds of the first fundamental distribution $lcAC_S$-structure},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {142--152},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a10/}
}
TY - JOUR AU - A. R. Rustanov AU - E. A. Polkina AU - G. V. Teplyakova TI - Integral manifolds of the first fundamental distribution $lcAC_S$-structure JO - Čebyševskij sbornik PY - 2022 SP - 142 EP - 152 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a10/ LA - ru ID - CHEB_2022_23_1_a10 ER -
A. R. Rustanov; E. A. Polkina; G. V. Teplyakova. Integral manifolds of the first fundamental distribution $lcAC_S$-structure. Čebyševskij sbornik, Tome 23 (2022) no. 1, pp. 142-152. http://geodesic.mathdoc.fr/item/CHEB_2022_23_1_a10/