On an extremal problem for positive definite functions
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 161-171
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider an extremal problem related to a set of continuous positive definite functions on $\mathbb{R}$ whose support is contained in the closed interval $[-\sigma,\sigma]$, $\sigma>0$ and the value at the origin is fixed (the class $\mathfrak{F}_\sigma$).
We consider the following problem. Let $\mu$ be a linear locally bounded functional on the set of continuous functions which have compact support, i.e. $C_c(\mathbb{R})$ and suppose that $\mu$ is real-valued functional on the sets $\mathfrak{F}_\sigma$, $\sigma>0$. For a fixed $\sigma>0$, it is required to find the following constants: $$ M(\mu,\sigma):=\sup\left\{ \mu(\varphi): \varphi\in\mathfrak{F}_\sigma\right\},\ m(\mu,\sigma):=\inf\left\{ \mu(\varphi): \varphi\in\mathfrak{F}_\sigma\right\}. $$ We have obtained a general solution to this problem for functionals of the following form $\mu(\varphi)=\int_\mathbb{R}\varphi(x)\rho(x)dx$, $\varphi\in C_c(\mathbb{R})$, where $\rho\in L_{loc}(\mathbb{R})$ and $\rho(x)=\overline{\rho(-x)}$ a.e. on $x\in\mathbb{R}$. For $\rho(x)\equiv1$, the value of $M(\mu,\sigma)$ was obtained by Siegel in 1935 and, independently, by Boas and Kac in 1945. In this article, we have obtained explicit solution to the problem under consideration in cases of $\rho(x)=ix$, $\rho(x)=x^2$ and $\rho(x)=i\mathop{\rm sign} x$, $x\in\mathbb{R}$.
In addition, in this paper we study the connection between the problem under consideration and pointwise inequalities for entire functions of exponential type $\leqslant\sigma$ whose restrictions on $\mathbb{R}$ are in $L_1(\mathbb{R})$. In particular, sharp inequalities are obtained for the first and second derivatives of such functions.
Keywords:
positive-definite functions, extremal problems, Bochner theorem, Fourier transform, entire functions of exponential type.
@article{CHEB_2021_22_5_a9,
author = {A. D. Manov},
title = {On an extremal problem for positive definite functions},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {161--171},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/}
}
A. D. Manov. On an extremal problem for positive definite functions. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 161-171. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/