On an extremal problem for positive definite functions
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 161-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider an extremal problem related to a set of continuous positive definite functions on $\mathbb{R}$ whose support is contained in the closed interval $[-\sigma,\sigma]$, $\sigma>0$ and the value at the origin is fixed (the class $\mathfrak{F}_\sigma$). We consider the following problem. Let $\mu$ be a linear locally bounded functional on the set of continuous functions which have compact support, i.e. $C_c(\mathbb{R})$ and suppose that $\mu$ is real-valued functional on the sets $\mathfrak{F}_\sigma$, $\sigma>0$. For a fixed $\sigma>0$, it is required to find the following constants: $$ M(\mu,\sigma):=\sup\left\{ \mu(\varphi): \varphi\in\mathfrak{F}_\sigma\right\},\ m(\mu,\sigma):=\inf\left\{ \mu(\varphi): \varphi\in\mathfrak{F}_\sigma\right\}. $$ We have obtained a general solution to this problem for functionals of the following form $\mu(\varphi)=\int_\mathbb{R}\varphi(x)\rho(x)dx$, $\varphi\in C_c(\mathbb{R})$, where $\rho\in L_{loc}(\mathbb{R})$ and $\rho(x)=\overline{\rho(-x)}$ a.e. on $x\in\mathbb{R}$. For $\rho(x)\equiv1$, the value of $M(\mu,\sigma)$ was obtained by Siegel in 1935 and, independently, by Boas and Kac in 1945. In this article, we have obtained explicit solution to the problem under consideration in cases of $\rho(x)=ix$, $\rho(x)=x^2$ and $\rho(x)=i\mathop{\rm sign} x$, $x\in\mathbb{R}$. In addition, in this paper we study the connection between the problem under consideration and pointwise inequalities for entire functions of exponential type $\leqslant\sigma$ whose restrictions on $\mathbb{R}$ are in $L_1(\mathbb{R})$. In particular, sharp inequalities are obtained for the first and second derivatives of such functions.
Keywords: positive-definite functions, extremal problems, Bochner theorem, Fourier transform, entire functions of exponential type.
@article{CHEB_2021_22_5_a9,
     author = {A. D. Manov},
     title = {On an extremal problem for positive definite functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/}
}
TY  - JOUR
AU  - A. D. Manov
TI  - On an extremal problem for positive definite functions
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 161
EP  - 171
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/
LA  - ru
ID  - CHEB_2021_22_5_a9
ER  - 
%0 Journal Article
%A A. D. Manov
%T On an extremal problem for positive definite functions
%J Čebyševskij sbornik
%D 2021
%P 161-171
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/
%G ru
%F CHEB_2021_22_5_a9
A. D. Manov. On an extremal problem for positive definite functions. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 161-171. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/

[1] Siegel C. L., “Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal problem”, Acta Math., 65:1 (1935), 307–323 | DOI | MR | Zbl

[2] Boas R. P. Jr., Kac M., “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12:1 (1945), 189–206 | MR | Zbl

[3] Gorbachev D. V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl

[4] Szász O., “Über harmonische Funktionen und L-Formen”, Math. Zeitschr., 1 (1918), 149–162 | DOI | MR

[5] Sasvári Z., Positive Definite and Definitizable Functions, Akad. Verl., Berlin, 1994, 208 pp. | MR | Zbl

[6] Sasvári Z., Multivariate Characteristic and Correlation Functions, De Gruyter, Berlin–Boston, 2013, 366 pp. | MR | Zbl

[7] Trigub R. M., Belinsky E. S., Fourier Analysis and Approximation of Functions, Kluwer-Springer, Boston–Dordrecht–London, 2004, 585 pp. | MR | Zbl

[8] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR

[9] Gorbachev D. V., “Konstanty Nikolskogo-Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 93–103

[10] Ibragimov I. I., “Ekstremalnye zadachi v klasse tselykh funktsii konechnoi stepeni”, Izv. AN SSSR. Ser. matem., 23:2 (1959), 243–256 | MR | Zbl

[11] Korevaar J., “An inequality for entire functions of exponential type”, Nieuw Arch. Wiskunde, 23:2 (1949), 55–62 | MR | Zbl

[12] Arestov V., Berdysheva E., Berens H., “On pointwise Turan's problem for positive definite functions”, East J. Approx., 9:1 (2003), 31–42 | MR | Zbl

[13] Kolountzakis M., Révész S. G., “On Pointwise Estimates of Positive Definite Functions With Given Support”, Canad. J. Math., 58:2 (2006), 401–418 | DOI | MR | Zbl