Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_5_a9, author = {A. D. Manov}, title = {On an extremal problem for positive definite functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {161--171}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/} }
A. D. Manov. On an extremal problem for positive definite functions. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 161-171. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a9/
[1] Siegel C. L., “Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal problem”, Acta Math., 65:1 (1935), 307–323 | DOI | MR | Zbl
[2] Boas R. P. Jr., Kac M., “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12:1 (1945), 189–206 | MR | Zbl
[3] Gorbachev D. V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl
[4] Szász O., “Über harmonische Funktionen und L-Formen”, Math. Zeitschr., 1 (1918), 149–162 | DOI | MR
[5] Sasvári Z., Positive Definite and Definitizable Functions, Akad. Verl., Berlin, 1994, 208 pp. | MR | Zbl
[6] Sasvári Z., Multivariate Characteristic and Correlation Functions, De Gruyter, Berlin–Boston, 2013, 366 pp. | MR | Zbl
[7] Trigub R. M., Belinsky E. S., Fourier Analysis and Approximation of Functions, Kluwer-Springer, Boston–Dordrecht–London, 2004, 585 pp. | MR | Zbl
[8] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR
[9] Gorbachev D. V., “Konstanty Nikolskogo-Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 93–103
[10] Ibragimov I. I., “Ekstremalnye zadachi v klasse tselykh funktsii konechnoi stepeni”, Izv. AN SSSR. Ser. matem., 23:2 (1959), 243–256 | MR | Zbl
[11] Korevaar J., “An inequality for entire functions of exponential type”, Nieuw Arch. Wiskunde, 23:2 (1949), 55–62 | MR | Zbl
[12] Arestov V., Berdysheva E., Berens H., “On pointwise Turan's problem for positive definite functions”, East J. Approx., 9:1 (2003), 31–42 | MR | Zbl
[13] Kolountzakis M., Révész S. G., “On Pointwise Estimates of Positive Definite Functions With Given Support”, Canad. J. Math., 58:2 (2006), 401–418 | DOI | MR | Zbl