Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_5_a8, author = {S. Yu. Lipatov}, title = {Transformations of metrics that preserve the geometric characteristics of finite metric spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {138--160}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a8/} }
TY - JOUR AU - S. Yu. Lipatov TI - Transformations of metrics that preserve the geometric characteristics of finite metric spaces JO - Čebyševskij sbornik PY - 2021 SP - 138 EP - 160 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a8/ LA - ru ID - CHEB_2021_22_5_a8 ER -
S. Yu. Lipatov. Transformations of metrics that preserve the geometric characteristics of finite metric spaces. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 138-160. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a8/
[1] Banks W. D., Conflitti A., Shparlinski I. E., “Character sums over integers with restricted $g$-ary digits”, Illinois J. Math., 46:3 (2002), 819–836 | DOI | MR | Zbl
[2] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[3] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, IKI, Izhevsk, 424 pp.
[4] Ivanov A.O., Tuzhilin A.A., Minimal Networks. Steiner Problem and Its Generalizations, CRC Press, 1994 | MR | Zbl
[5] Lipatov S.Yu., “Funktsii, ne menyayuschie tipy minimalnykh zapolnenii”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2015, 42–45 | Zbl
[6] S. Yu Lipatov, “Metrics transformations preserving the types of one-dimensional minimal fillings”, Filomat, 33:4 (2019), 1081–1089 | DOI | MR | Zbl
[7] Moscow Univ. Math. Bull., 67:2 (2012), 52–54 | DOI | MR | Zbl
[8] Z.N.Ovsyannikov, “Otkrytoe semeistvo mnozhestv, dlya kotorykh minimalnoe zapolnenie ne edinstvenno”, Fund. i prikl. matem., 18:2 (2013), 153–156
[9] I. L. Laut, Z. N. Ovsyannikov, “Vid minimalnykh razvetvlennykh geodezicheskikh v normirovannom prostranstve opredelyaet normu”, Fund. i prikl. matem., 18:2 (2013), 67–77
[10] V. A. Mischenko, “Otsenki otnosheniya Shteinera–Gromova rimanovykh mnogoobrazii”, Fund. i prikl. matem., 18:2 (2013), 119–124
[11] Z. N. Ovsyannikov, “Otnosheniya Shteinera, Shteinera–Gromova i subotnosheniya Shteinera dlya prostranstva kompaktov v evklidovoi ploskosti s rasstoyaniem Khausdorfa”, Fund. i prikl. matem., 18:2 (2013), 157–165
[12] Z. N. Ovsyannikov, “Subotnoshenie Shteinera dlya pyati tochek na ploskosti i chetyrekh tochek v prostranstve”, Fund. i prikl. matem., 18:2 (2013), 167–179
[13] A.S.Pakhomova, “Kriterii nepreryvnosti otnoshenii tipa Shteinera v prostranstve Gromova-Khausdorfa”, Matem. zametki, 96:1 (2014), 126–137 | DOI | MR | Zbl
[14] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, Uspekhi matematicheskikh nauk, 47:2 (1992)
[15] A.Ivanov, and A.Tuzhilin, “Minimal fillings of finite metric spaces: The state of the art”, Contemporary Mathematics, 625, 2014, 9–35 | DOI | MR | Zbl
[16] A. Ivanov, Z. Ovsyannikov, N. Strelkova, A. Tuzhilin, “Odnomernye minimalnye zapolneniya s rebrami otritsatelnogo vesa”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika i mekhanika, 2012, no. 5, 3–8
[17] A. Yu. Eremin, “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl
[18] D. Z. Du, F. K. Hwang, “A proof of Gilbert-Pollak Conjecture on the Steiner ratio”, Algorithmica, 7 (1992), 121–135 ; Матем. сб., 204:9 (2013), 51–72 | DOI | MR | Zbl | DOI | MR
[19] M. Gromov, “Filling Riemannian manifolds”, J. Diff. Geom., 18:1 (1983), 1–147 | MR | Zbl
[20] D.Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.-Izhevsk, 2004, 512 pp. | MR