Pseudorandom search algorithms in problems of optimal choice of parameters of complex econometric models
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 25-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The pseudorandom search method considered in this paper is quite universal and allows solving complex econometric problems using the discrete least squares method. The paper considers the problem of finding the parameters of a linear combination of the Cobb-Douglas-Tinbergen function and the third production function, which is its generalization. If the choice of parameters of the Cobb-Douglas-Tinbergen function, or the third production function after logarithmization and the application of the least squares method is reduced to a linear problem that is solved in the final form, then a linear combination of these two models requires solving an optimization problem of 10 or 11 variables with a transcendental function, which makes the problem difficult to solve. At least 10 different types of classical number-theoretic grids are well known in the literature. From the point of view of the organization of the pseudorandom belt, the grids and LP sequences proposed by I. M. Sobol are the most well studied. Previously, Korobov parallelepipedal grids were used in solving problems of textural analysis in geophysics. 6-dimensional grids were used in these works. In our work, we have to work with 10-dimensional and 11-dimensional grids with a much larger number of points in order to overcome the well-known "curse of dimensionality". It is partially possible to reduce the dimension to the 9th by using the properties of the models under consideration, which are studied in detail in this paper. As a result of the study, it was found that three parameters cannot be determined unambiguously from the original mathematical model. An additional optimization problem arises for the least squares method if we postulate the proximity of technological coefficients. The latter assumption requires additional economic interpretation and will be the subject of further economic research. It would be interesting to compare the results of calculations for different regions of the country and for the country as a whole. The problem is related to the availability of data, but we expect to consider this formulation of the problem in subsequent works.
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2021_22_5_a3,
     author = {T. N. Averina and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Pseudorandom search algorithms in problems of optimal choice of parameters of complex econometric models},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {25--43},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a3/}
}
TY  - JOUR
AU  - T. N. Averina
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Pseudorandom search algorithms in problems of optimal choice of parameters of complex econometric models
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 25
EP  - 43
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a3/
LA  - ru
ID  - CHEB_2021_22_5_a3
ER  - 
%0 Journal Article
%A T. N. Averina
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Pseudorandom search algorithms in problems of optimal choice of parameters of complex econometric models
%J Čebyševskij sbornik
%D 2021
%P 25-43
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a3/
%G ru
%F CHEB_2021_22_5_a3
T. N. Averina; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Pseudorandom search algorithms in problems of optimal choice of parameters of complex econometric models. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 25-43. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a3/

[1] Basovskii L. E., Basovskaya E. N., “Issledovanie ekonomiki regionov Rossii: ekonometricheskii podkhod”, Nauchnye issledovaniya i razrabotki. Ekonomika, 2014, no. 2, 13–17

[2] Basovskii L.E., Basovskaya E.N., Averina T.N., “Osnovnye faktory proizvoditelnosti truda v regionakh Rossii”, Nauchnye issledovaniya i razrabotki. Ekonomika. Nauchno-prakticheskii zhurnal, 7:5 (2019), 9–17

[3] L. P. Dobrovolskaya, S. I. Shelobaev, “Teoretiko-chislovoi metod v ekonometrike”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVI Mezhdunar. konf., posvyaschennoi 80-letiyu so dnya rozhdeniya professora Mishelya Deza, Tul. gos. ped. un-t im. L. N. Tolstogo, Tula, 2019, 280–283

[4] Dobrovolskii M. N., “Ob optimalnykh koeffitsientakh kombinirovannykh setok”, Chebyshevskii sbornik, 5:1(9) (2004), 95–121 | MR | Zbl

[5] Dobrovolskii N. N., Dobrovolskaya L. P., , Seregina N. K., Bocharova O. E., Algoritmy vychisleniya optimalnykh koeffitsientov, Monogr., ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 223 pp.

[6] Dobrovolskii N. M., Klepikova N. L., Tablitsa optimalnykh koeffitsientov dlya priblizhennogo vychisleniya kratnykh integralov, Preprint No 63, IOFAN SSSR, M., 1990

[7] Informatsionno-analiticheskii, energeticheskii sait, http://www.eeseaec.org/energoekonomiceskie-modeli-stran-i-organizacij-mira

[8] Makarov V.L., Aivazyan S.A., Afanasev M.Yu., Bakhtizin A.R, Nanavyan A.M., “Otsenka effektivnosti regionov RF s uchetom intellektualnogo kapitala, kharakteristik gotovnosti k innovatsiyam, urovnya blagosostoyaniya i kachestva zhizni naseleniya”, Ekonomika regionov, 2014, no. 4, 9–30

[9] Mamonov M.E., Pestova A.A., “Analiz tekhnicheskoi effektivnosti natsionalnykh ekonomik: rol institutov, infrastruktury i resursnoi renty”, Zhurnal Novoi ekonomicheskoi assotsiatsii, 2015, no. 3, 44–78

[10] L.M. Gokhberg, K.A. Ditkovskii, E.I. Evnevich i dr., Nauka. Tekhnologii. Innovatsii: 2020: kratkii statisticheskii sbornik, Nats. Issled. Un-t «Vysshaya shkola ekonomiki», M., 2020, 88 pp. https://issek.hse.ru/mirror/pubs/share/340117242.pdf

[11] Nikitin A. N., Rusakova E. I., Parkhomenko E. I., Ivankina T. I., Dobrovolskii N. M., “O rekonstruktsii paleotektonicheskikh napryazhenii po dannym o pezoelektricheskikh teksturakh gornykh porod”, Izvestiya AN SSSR. Fizika Zemli, 1988, no. 9, 66–74

[12] Nikitin A. N., Rusakova E. I., Parkhomenko E. I., Ivankina T. I., Dobrovolskii N. M., “Reconstruction of Paleotectonic Stresses Using Data on Piezoelectric Texstures of Rocks”, Izvestiya Earth Physics, 24:9 (1988), 728–734

[13] Rebrova I. Yu., Chubarikov V. N., Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevskii sbornik, 19:4 (68) (2018), 118–176 | DOI | MR | Zbl

[14] Reiting innovatsionnogo razvitiya sub'ektov Rossiiskoi Federatsii, Nats. Issled. Un-t «Vysshaya shkola ekonomiki», M., 2019 https://issek.hse.ru/rirr2019

[15] I. M. Sobol, “Ob otsenke tochnosti prosteishego mnogomernogo poiska”, Dokl. AN SSSR, 266:3 (1982), 569–572 | MR | Zbl