Modeling of the process of corrosion cracking of underground pipelines
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 374-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents the results of the development of a methodology for predicting the process of corrosion cracking of underground pipelines using the COMSOL Multiphysics 5.6: Corrosion Module software product. Using the developed technique, it was found that at small values of longitudinal deformation (1.75 and 2.75 mm), a uniform distribution of stresses, corrosion potential, density of anode and cathode current is observed along the entire length of the crack. With an increase in the degree of deformation of the order of 3.75 and 4 mm, the distribution of stresses, corrosion potential, density of the anode and cathode current is more uneven: the maximum values of these values are reached at the top of the corrosion crack, and their more uniform distribution is characteristic along its edges. It is shown that the effect of local elastic deformation on the corrosion crack does not contribute to the strengthening of the mechanical-electrochemical interaction, which contributes to an increase in corrosion activity.
Keywords: corrosion cracking, forecasting, longitudinal deformation, corrosion crack.
@article{CHEB_2021_22_5_a28,
     author = {S. N. Kutepov and A. N. Sergeev and A. E. Gvozdev and A. N. Chukanov and V. A. Tereshin and O. V. Kuzovleva and E. V. Tsoy and E. S. Krupitsyn},
     title = {Modeling of the process of corrosion cracking of underground pipelines},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {374--383},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a28/}
}
TY  - JOUR
AU  - S. N. Kutepov
AU  - A. N. Sergeev
AU  - A. E. Gvozdev
AU  - A. N. Chukanov
AU  - V. A. Tereshin
AU  - O. V. Kuzovleva
AU  - E. V. Tsoy
AU  - E. S. Krupitsyn
TI  - Modeling of the process of corrosion cracking of underground pipelines
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 374
EP  - 383
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a28/
LA  - ru
ID  - CHEB_2021_22_5_a28
ER  - 
%0 Journal Article
%A S. N. Kutepov
%A A. N. Sergeev
%A A. E. Gvozdev
%A A. N. Chukanov
%A V. A. Tereshin
%A O. V. Kuzovleva
%A E. V. Tsoy
%A E. S. Krupitsyn
%T Modeling of the process of corrosion cracking of underground pipelines
%J Čebyševskij sbornik
%D 2021
%P 374-383
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a28/
%G ru
%F CHEB_2021_22_5_a28
S. N. Kutepov; A. N. Sergeev; A. E. Gvozdev; A. N. Chukanov; V. A. Tereshin; O. V. Kuzovleva; E. V. Tsoy; E. S. Krupitsyn. Modeling of the process of corrosion cracking of underground pipelines. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 374-383. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a28/

[1] Zhidkov A. V., Primenenie sistemy ANSYS k resheniyu zadach geometricheskogo i konechno-elementnogo modelirovaniya. Uchebno-metodicheskii material po programme povysheniya kvalifikatsii «Informatsionnye sistemy v matematike i mekhanike», Nizhnii Novgorod, 2006, 115 pp.

[2] COMSOL Multiphysics: Corrosion Module. User's Guide, 2019, 428 pp.

[3] Xu L. Y., Cheng Y. F., “Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion”, Corrosion Science, 73 (2013), 150–160 | DOI

[4] COMSOL Multiphysics: Structural mechanics module. User's Guide, 2019, 1406 pp.

[5] M. Kh. Shorshorov, A. E. Gvozdev, A. N. Sergeev, S. N. Kutepov, O. V. Kuzovleva, E. M. Seledkin, D. S. Klementev, A. A. Kalinin, Modelirovanie protsessov resursosberegayuschei obrabotki slitkovykh, poroshkovykh, nanostrukturnykh i kompozitsionnykh materialov, monografiya, izd. 2-e, ispr. i dop., Infra-Inzheneriya, M.–Vologda, 2021, 360 pp.

[6] N. N. Sergeev, S. N. Kutepov, A. N. Sergeev, A. G. Kolmakov, V. V. Izvol'skii, A. E. Gvozdev, “Long-Term Strength of 22Kh2G2AYu Reinforcing-Bar Steel during Corrosion Cracking Tests in a Boiling Nitrate Solution”, Russian Metallurgy (Metally), 2020, no. 4, 434–440 | DOI

[7] N. N. Sergeev, A. N. Sergeev, S. N. Kutepov, A. E. Gvozdev, A. G. Kolmakov, D. S. Klementev, “Influence of Heat Treatment on Residual Stress Formation in the Wear-Resistant Steel 60-Steel 15-Steel 60 Bimetal Material”, Inorganic Materials: Applied Research., 12:1 (2021), 5–9 | DOI

[8] A. N. Sergeev, S. N. Kutepov, O. V. Kuzovleva, A. E. Gvozdev, D. S. Klementev, “Matematicheskoe planirovanie i modelirovanie protsessov povedeniya metallicheskikh sistem v ekstremalnykh usloviyakh i sostoyaniyakh”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII Mezhdunarodnoi konferentsii, posvyaschennoi so dnya rozhdeniya professorov B.M. Bredikhina, V.I. Nechaeva i S.B. Stechkina, TGPU im. L.N. Tolstogo, Tula, 2020, 385–388

[9] A. E. Gvozdev, Ekstremalnye effekty prochnosti i plastichnosti v metallicheskikh vysokolegirovannykh slitkovykh i poroshkovykh sistemakh, monografiya, 2-e izd., isprav. i dop., Izdatelstvo TulGU, Tula, 2019, 477 pp.

[10] M. Kh. Shorshorov, A. E. Gvozdev, V. I. Zolotukhin, A. N. Sergeev, A. A. Kalinin, A. D. Breki, N. N. Sergeev, O. V. Kuzovleva, N. E. Starikov, D. V. Malii, Razrabotka progressivnykh tekhnologii polucheniya i obrabotki metallov, splavov, poroshkovykh i kompozitsionnykh nanomaterialov, Monografiya, Izdatelstvo TulGU, Tula, 2016, 235 pp.