About the Stirling formula
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 350-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the version of the Stirling formula is found. It is the useful and siutable for applications. A deduction of this formula is based on two the Euler's statements: the expansion of the Gamma-function into the infinite product and the Euler–MacLauren summation formula of values of the smooth function over integers.
Keywords: Euler gamma-function, Stirling formula, Euler–MacLauren–Sonin summation formula.
@article{CHEB_2021_22_5_a24,
     author = {A. Ghiyasi},
     title = {About the {Stirling} formula},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {350--353},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a24/}
}
TY  - JOUR
AU  - A. Ghiyasi
TI  - About the Stirling formula
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 350
EP  - 353
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a24/
LA  - ru
ID  - CHEB_2021_22_5_a24
ER  - 
%0 Journal Article
%A A. Ghiyasi
%T About the Stirling formula
%J Čebyševskij sbornik
%D 2021
%P 350-353
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a24/
%G ru
%F CHEB_2021_22_5_a24
A. Ghiyasi. About the Stirling formula. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 350-353. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a24/

[1] de la Valle-Pussen Sh.-Zh., Kurs analiza beskonechno malykh, v. II, Gos.tekhn.-teor. izd-vo, M.-L., 1933, 169–200

[2] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 4-e izd., ispr., Drofa, M., 2004, 435–437