About the Stirling formula
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 350-353
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the version of the Stirling formula is found. It is the useful and siutable for applications. A deduction of this formula is based on two the Euler's statements: the expansion of the Gamma-function into the infinite product and the Euler–MacLauren summation formula of values of the smooth function over integers.
Keywords:
Euler gamma-function, Stirling formula, Euler–MacLauren–Sonin summation formula.
@article{CHEB_2021_22_5_a24,
author = {A. Ghiyasi},
title = {About the {Stirling} formula},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {350--353},
year = {2021},
volume = {22},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a24/}
}
A. Ghiyasi. About the Stirling formula. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 350-353. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a24/
[1] de la Valle-Pussen Sh.-Zh., Kurs analiza beskonechno malykh, v. II, Gos.tekhn.-teor. izd-vo, M.-L., 1933, 169–200
[2] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, 4-e izd., ispr., Drofa, M., 2004, 435–437