Numerical methods for optimizing the process of fusion of electroerosive particles of the KHМS alloy
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 252-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of optimizing the fusion of an electroerosive cobalt-chromium charge, which was carried out by setting up a complete factor experiment and the method of steep ascent of Box and Wilson. The optimal parameters of the process of obtaining a cobalt-chromium alloy by spark plasma sintering of particles of the KHMS alloy in hardness have been determined. The parameters of operation of the spark plasma fusion plant were selected as factors: temperature, pressure and holding time. The optimal parameters of the installation were determined for the electroerosive material KHMS, previously obtained in butyl alcohol. According to the conducted series of experiments, the limiting values of the optimization parameter (hardness) for the process of fusing an electroerosive cobalt-chromium charge were determined, which amounted to: 223.8 HB at a pressure of 30 MPa, a temperature of 560$^\circ$ C and a holding time of 3 minutes.
Keywords: electroerosive cobalt-chromium powder, spark plasma fusion, process optimization, hardness.
@article{CHEB_2021_22_5_a16,
     author = {E. V. Ageev and A. Yu. Altukhov and A. E. Gvozdev and O. V. Kuzovleva and A. A. Kalinin},
     title = {Numerical methods for optimizing the process of fusion of electroerosive particles of the {KH{\CYRM}S} alloy},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {252--262},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a16/}
}
TY  - JOUR
AU  - E. V. Ageev
AU  - A. Yu. Altukhov
AU  - A. E. Gvozdev
AU  - O. V. Kuzovleva
AU  - A. A. Kalinin
TI  - Numerical methods for optimizing the process of fusion of electroerosive particles of the KHМS alloy
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 252
EP  - 262
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a16/
LA  - ru
ID  - CHEB_2021_22_5_a16
ER  - 
%0 Journal Article
%A E. V. Ageev
%A A. Yu. Altukhov
%A A. E. Gvozdev
%A O. V. Kuzovleva
%A A. A. Kalinin
%T Numerical methods for optimizing the process of fusion of electroerosive particles of the KHМS alloy
%J Čebyševskij sbornik
%D 2021
%P 252-262
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a16/
%G ru
%F CHEB_2021_22_5_a16
E. V. Ageev; A. Yu. Altukhov; A. E. Gvozdev; O. V. Kuzovleva; A. A. Kalinin. Numerical methods for optimizing the process of fusion of electroerosive particles of the KHМS alloy. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 252-262. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a16/

[1] Song B., Dong S., Zhang B. et al., “Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V”, Materials Design, 35 (2012), 120–125 | DOI

[2] Song B., Dong S., Coddet P. et al., “Fabrication and microstructure characterization of selective laser melted FeAl intermetallic parts”, Surface and Coatings Technology, 206 (2012), 4704–4709 | DOI

[3] Loeber L., Biamino S., Ackelid U. et al., “Comparison of Selective Laser and Electron Beam Melted Titanium Aluminides”, Conference paper of 22nd International symposium “Solid freeform fabrication proceedings” (University of Texas, Austin, 2011), 547–556

[4] Biamino S., Penna A., Ackelid U. et al., “Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation”, Intermetallics, 19 (2011), 776–781 | DOI

[5] Safdar A., Wei L.Y., Snis A., Lai Z., “Evaluation of microstructural developmentin electron beam melted Ti–6Al–4V”, Materials Characterization, 65 (2012), 8–15 | DOI

[6] Safdar A., He H.Z., Wei L.Y., Snis A. et al., “Effect of process parameters settings and thickness on surface roughness of EBM produced Ti–6Al–4V”, Rapid Prototyping Journal, 18:5 (2012), 401–408 | DOI

[7] Gu D.D., Meiners W., Wissenbach K., Poprawe R., “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57:3 (2012), 133–164 | DOI

[8] Wang Z., Guana K., Gaoa M., “The microstructure and mechanical properties of deposited-IN718 by selective laser melting”, Journal of Alloys and Compounds, 513 (2012), 518–523 | DOI

[9] Grigoryants A.G., Tretyakov R.S., Funtikov V.A., “Povyshenie kachestva poverkhnostnykh sloev detalei, poluchennykh lazernoi additivnoi tekhnologiei”, Tekhnologiya mashinostroeniya, 2015, no. 10, 68–73

[10] Vulpe M.N., Kolesnikov D.N., Morushkin A.E., “Lazernaya svarka zagotovok, poluchennykh additivnymi tekhnologiyami”, Tekhnologiya mashinostroeniya i materialovedenie, 2017, no. 1, 142–144

[11] Nigmetzyanov R.I., Sundukov S.K., Fatyukhin D.S., “Vliyanie ultrazvukovoi obrabotki na sherokhovatost poverkhnosti detalei, poluchennykh additivnymi tekhnologiyami”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2016, no. 315, 47–53

[12] Chumakov D.M., “Perspektivy ispolzovaniya additivnykh tekhnologii pri sozdanii aviatsionnoi i raketno-kosmicheskoi tekhniki”, Trudy MAI, 2014, no. 78, 31

[13] Grigoryants A.G., Novichenko D.Yu., Smurov I.Yu., “Lazernaya additivnaya tekhnologiya izgotovleniya pokrytii i detalei iz kompozitsionnogo materiala”, Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2011, no. 7, 38–46

[14] Leitsin V.N., Ponomarev S.V., Dmitrieva M.A., Ivonin I.V., Tyryshkin I.M., “Modelirovanie protsessa spekaniya izdelii iz nizkotemperaturnoi keramiki, formiruemykh additivnymi tekhnologiyami”, Fizicheskaya mezomekhanika, 19:4 (2016), 21–27

[15] Volosova M.A., Okunkova A.A., Konov S.G., Kotoban D.V., “Additivnye tekhnologii: ot tekhnicheskogo tvorchestva k innovatsionnym promyshlennym tekhnologiyam”, Tekhnicheskoe tvorchestvo molodezhi, 2014, no. 5(87), 9–14

[16] Fedorov M.M., “Razrabotka zamknutoi tekhnologicheskoi tsepochki izgotovleniya detalei GTD po additivnym tekhnologiyam”, Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P.A. Soloveva, 2017, no. 1(40), 115–118

[17] Kovalev O.B., “Modelirovanie protsessov v tekhnologiyakh lazernogo additivnogo izgotovleniya ob'emnykh metalloizdelii”, Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya, 80:4 (2016), 408 | DOI

[18] Smirnov V.V., Shaikhutdinova E.F., “Vnedrenie additivnykh tekhnologii izgotovleniya detalei v seriinoe proizvodstvo”, Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva, 2013, no. 2-2, 90–94

[19] Smirnov V.V., Ganeev A.A., Shaikhutdinova E.F., “Primenenie additivnykh tekhnologii dlya izgotovleniya detalei iz intermetallidnykh splavov na osnove titana”, Polzunovskii almanakh, 2013, no. 2, 78–80

[20] Ageev E.V., Latypov R.A., “Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes”, Russian Journal of Non-Ferrous Metals, 55:6 (2014), 577–580 | DOI

[21] Latypov R.A., Ageev E.V., Altukhov A.Y., Ageeva E.V., “Manufacture of cobalt–chromium powders by the electric discharge dispersion of wastes and their investigation”, Russian metallurgy (Metally), 2018:12 (2018), 1177–1180 | DOI

[22] Ageev E.V., Latypov R.A., “Poluchenie i issledovanie zagotovok tverdogo splava iz poroshkov, poluchennykh elektroerozionnym dispergirovaniem volframsoderzhaschikh otkhodov”, Izvestiya vysshikh uchebnykh zavedenii. Tsvetnaya metallurgiya, 2014, no. 5, 50–53

[23] E.V.Ageev, E.V. Ageeva, A.Yu. Altukhov, “Additivnye izdeliya iz elektroerozionnogo kobaltokhromovogo poroshka”, Metallurg, 2021, no. 10, 78–81