On polyadic Liouville numbers
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 243-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study here polyadic Liouville numbers, which are involved in a series of recent papers. The canonic expansion of a polyadic number $\lambda$ is of the form $$ \lambda= \sum_{n=0}^\infty a_{n} n!, a_{n}\in\mathbb{\mathrm{Z}}, 0\leq a_{n}\leq n.$$ This series converges in any field of $p-$ adic numbers $ \mathbb{\mathrm{Q}}_p $. We call a polyadic number $\lambda$ a polyadic Liouville number, if for any $n$ and $P$ there exists a positive integer $A$ such that for all primes $p$, satisfying $p\leq P$ the inequality $$\left|\lambda -A \right|_{p}^{-n}$$ holds. Let $k\geq 2$ be a positive integer. We denote for a positive integer $m$ $$\Phi(k,m)=k^{k^{\ldots^{k}}}$$ Let $$n_{m}=\Phi(k,m)$$ and let$$\alpha=\sum_{m=0}^{\infty}(n_{m})!.$$ Theorem 1. For any positive integer $k\geq 2$ and any prime number $p$ the series $\alpha$ converges to a transcendental element of the ring $\mathbf{Z}_p.$ In other words, the polyadic number $\alpha$ is globally transcendental.
Keywords: polyadic number, polyadic Liouville number.
@article{CHEB_2021_22_5_a15,
     author = {V. G. Chirskii},
     title = {On polyadic {Liouville} numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a15/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - On polyadic Liouville numbers
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 243
EP  - 251
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a15/
LA  - ru
ID  - CHEB_2021_22_5_a15
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T On polyadic Liouville numbers
%J Čebyševskij sbornik
%D 2021
%P 243-251
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a15/
%G ru
%F CHEB_2021_22_5_a15
V. G. Chirskii. On polyadic Liouville numbers. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 243-251. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a15/

[1] Chirskii V. G., “Arifmeticheskie svoistva znachenii v poliadicheskoi liuvillevoi tochke ryadov eilerova tipa s poliadicheskim liuvillevym parametrom”, Chebyshevskii sbornik, 22:2 (2021), 304–312 | DOI | MR | Zbl

[2] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987, 448 pp. | MR

[3] Adams W., “On the algebraic independence of certain Liouville numbers”, J. Pure and Appl. Algebra, 13 (1978), 41–47 | DOI | MR | Zbl

[4] Waldschmidt M., “Independance algebrique de nombres de Liouville”, Lect. Notes Math., 1415, 1990, 225–235 | DOI | MR | Zbl

[5] Chirskii V. G., “Arifmeticheskie svoistva ryadov eilerova tipa s poliadicheskim liuvillevym parametrom”, Doklady Akademii nauk, ser. matem.inform. prots. upravl., 494 (2020), 69–70

[6] Chirskii V. G., “Arifmeticheskie svoistva znachenii v poliadicheskoi liuvillevoi tochke ryadov eilerova tipa s poliadicheskim liuvillevym parametrom”, Chebyshevskii sbornik, 22:2 (2021), 304–312 | DOI | MR | Zbl

[7] Chirskii V. G., “Obobschenie ponyatiya globalnogo sootnosheniya”, Trudy po teorii chisel, Zap. nauchn. sem. POMI, 322, POMI, Spb., 2005, 220–232

[8] Chirskii V. G., “O ryadakh, algebraicheski nezavisimykh vo vsekh lokalnykh polyakh”, Vestn. Mosk. un-ta. Ser. Matem., mekh., 1994, no. 3, 93–95 | Zbl

[9] Chirskii V. G., “Product Formula, Global Relations and Polyadic Integers”, Russ. J. Math. Phys., 26:3 (2019), 286–305 | DOI | MR | Zbl

[10] Chirskii V. G., “Arithmetic properties of generalized hypergeometric $F$-series”, Russ. J. Math. Phys., 27:2 (2020), 175–184 | DOI | MR | Zbl

[11] Yudenkova E. Yu., “Arifmeticheskie svoistva ryadov nekotorykh klassov v poliadicheskoi liuvillevoi tochke”, Chebyshevskii sbornik, 22:2 (2021), 304–312 | DOI | MR

[12] Yudenkova E. Yu., “Beskonechnaya lineinaya i algebraicheskaya nezavisimost zngachenii F-ryadov v poliadicheskikh liuvillevykh tochkakh”, Chebyshevskii sbornik, 22:2 (2021), 334–346 | DOI | MR | Zbl

[13] Matveev V. Yu., “Algebraicheskaya nezavisimost nekotorykh pochti poliadicheskikh ryadov”, Chebyshevskii sbornik, 17:3 (2018), 156–167

[14] Matveev V. Yu., “Svoistva elementov pryamykh proizvedenii polei”, Chebyshevskii sbornik, 20:2 (2019), 383–390 | DOI | MR | Zbl

[15] Krupitsyn E. S., “Arifmeticheskie svoistva ryadov nekotorykh klassov”, Chebyshevskii sbornik, 20:2 (2019), 374–382 | DOI | MR

[16] Samsonov A. S., “Arifmeticheskie svoistva elementov pryamykh proizvedenii p-adicheskikh polei II”, Chebyshevskii sbornik, 22:2 (2021), 334–346 | DOI | MR

[17] Munos Vaskes A. Kh., “Arifmeticheskie svoistva nekotorykh gipergeometricheskikh F-ryadov”, Chebyshevskii sbornik, 22:2 (2021), 519–527 | DOI | MR | Zbl