On polyadic Liouville numbers
Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 243-251
Voir la notice de l'article provenant de la source Math-Net.Ru
We study here polyadic Liouville numbers, which are involved in a series of recent papers.
The canonic expansion of a polyadic number $\lambda$ is of the form $$ \lambda= \sum_{n=0}^\infty a_{n} n!, a_{n}\in\mathbb{\mathrm{Z}}, 0\leq a_{n}\leq n.$$ This series converges in any field of $p-$ adic numbers $ \mathbb{\mathrm{Q}}_p $.
We call a polyadic number $\lambda$ a polyadic Liouville number, if for any $n$ and $P$ there exists a positive integer $A$ such that for all primes $p$, satisfying $p\leq P$ the inequality $$\left|\lambda -A \right|_{p}^{-n}$$ holds.
Let $k\geq 2$ be a positive integer. We denote for a positive integer $m$ $$\Phi(k,m)=k^{k^{\ldots^{k}}}$$ Let $$n_{m}=\Phi(k,m)$$ and let$$\alpha=\sum_{m=0}^{\infty}(n_{m})!.$$ Theorem 1. For any positive integer $k\geq 2$ and any prime number $p$ the series $\alpha$ converges to a transcendental element of the ring $\mathbf{Z}_p.$ In other words, the polyadic number $\alpha$ is globally transcendental.
Keywords:
polyadic number, polyadic Liouville number.
@article{CHEB_2021_22_5_a15,
author = {V. G. Chirskii},
title = {On polyadic {Liouville} numbers},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {243--251},
publisher = {mathdoc},
volume = {22},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a15/}
}
V. G. Chirskii. On polyadic Liouville numbers. Čebyševskij sbornik, Tome 22 (2021) no. 5, pp. 243-251. http://geodesic.mathdoc.fr/item/CHEB_2021_22_5_a15/